7 research outputs found

    Solvent-Driven Pā€“S vs Pā€“C Bond Formation from a Diplatinum(III) Complex and Sulfur-Based Anions

    Get PDF
    The outcome of the reaction of the PtĀ­(III),PtĀ­(III) complex [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt<sup>III</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>III</sup>(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>]Ā­(<i>Ptā€“Pt</i>) (<b>1</b>) with the S-based anions thiophenoxide (PhS<sup>ā€“</sup>), ethyl xanthogenate (EtOCS<sub>2</sub><sup>ā€“</sup>), 2-mercaptopyrimidinate (pymS<sup>ā€“</sup>), and 2-mercaptopyridinate (pyS<sup>ā€“</sup>) was found to be dependent on the reaction solvent. The reactions carried out in acetone led to the formation of [N<sup>n</sup>Bu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-PhS-PPh<sub>2</sub>)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>] (<b>2</b>), [N<sup>n</sup>Bu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-EtOCS<sub>2</sub>-PPh<sub>2</sub>)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>] (<b>3</b>), [N<sup>n</sup>Bu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-pymS-PPh<sub>2</sub>)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>] (<b>4</b>), and [N<sup>n</sup>Bu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-pySā€“PPh<sub>2</sub>)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>] (<b>5</b>), respectively (R<sub>F</sub> = C<sub>6</sub>F<sub>5</sub>). Complexes <b>2</b>ā€“<b>5</b> display new Ph<sub>2</sub>PĀ­(SL) ligands exhibiting a Īŗ<sup>2</sup>-<i>P</i>,<i>S</i> bridging coordination mode, which is derived from a reductive elimination of a PPh<sub>2</sub> group and the S-based anion. Carrying out the reaction in dichloromethane afforded, in the cases of EtOCS<sub>2</sub><sup>ā€“</sup> and pymS<sup>ā€“</sup>, the monobridged complexes [N<sup>n</sup>Bu<sub>4</sub>]Ā­[(PPh<sub>2</sub>R<sub>F</sub>)Ā­(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(EtOCS<sub>2</sub>)Ā­(R<sub>F</sub>)] (<b>6</b>) and [N<sup>n</sup>Bu<sub>4</sub>]Ā­[(PPh<sub>2</sub>R<sub>F</sub>)Ā­(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(pymS)Ā­(R<sub>F</sub>)] (<b>7</b>), respectively, which are derived from reductive elimination of a PPh<sub>2</sub> group with a pentafluorophenyl ring. The reaction of <b>1</b> with EtOCS<sub>2</sub>K in acetonitrile yielded a mixture of <b>3</b> and <b>6</b> as a consequence of the concurrence of two processes: (a) the formation of <b>3</b> by a reaction that parallels the formation of <b>3</b> by <b>1</b> plus EtOCS<sub>2</sub>K in acetone and (b) the transformation of <b>1</b> into the neutral complex [(PPh<sub>2</sub>R<sub>F</sub>)Ā­(CH<sub>3</sub>CN)Ā­(R<sub>F</sub>)Ā­Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>(CH<sub>3</sub>CN)] (<b>8</b>), which, in turn, reacts with EtOCS<sub>2</sub>K to give <b>6</b>. The <b>1</b> to <b>8</b> transformation was found to be fully reversible. In fact, dissolving <b>8</b> in acetone or dichloromethane afforded pure <b>1</b> after solvent evaporation or crystallization with <i>n</i>-hexane. The XRD structures of <b>2</b>ā€“<b>4</b> and <b>6</b>ā€“<b>8</b> were determined, and the behavior in solution of the new complexes is discussed

    Synthesis and Reactivity of the Unsaturated Trinuclear Phosphanido Complex [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt(PPh<sub>3</sub>)]

    No full text
    The reaction of [NBu<sub>4</sub>]Ā­[(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>PtĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>PtĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>PtĀ­(<i>O</i>,<i>O</i>-acac)] (48 VEC) with [HPPh<sub>3</sub>]Ā­[ClO<sub>4</sub>] gives the 46 VEC unsaturated [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt<sup>1</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>2</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>3</sup>(PPh<sub>3</sub>)]Ā­(Pt<sup>2</sup>ā€“Pt<sup>3</sup>) (<b>1</b>), a trinuclear compound endowed with a Ptā€“Pt bond. This compound displays amphiphilic behavior and reacts easily with nucleophiles L, yielding the saturated complexes [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(PPh<sub>3</sub>)Ā­L] [L = PPh<sub>3</sub> (<b>2</b>), py (<b>3</b>)]. The reaction with the electrophile [AgĀ­(OClO<sub>3</sub>)Ā­PPh<sub>3</sub>] affords the adduct <b>1</b>Ā·AgPPh<sub>3</sub>, which evolves, even at low temperature, to a mixture in which [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt<sup>III</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>III</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(PPh<sub>3</sub>)<sub>2</sub>]<sup>2+</sup>(Pt<sup>III</sup>ā€“Pt<sup>III</sup>) and <b>2</b> (plus silver metal) are present. The nucleophilic nature of <b>1</b> is also demonstrated through its reaction with <i>cis</i>-[PtĀ­(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>(THF)<sub>2</sub>], which results in the formation of [Pt<sub>4</sub>(Ī¼-PPh<sub>2</sub>)<sub>4</sub>(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>(PPh<sub>3</sub>)] (<b>4</b>). The structure and NMR features indicate that <b>1</b> can be better considered as a Pt<sup>II</sup>ā€“Pt<sup>III</sup>ā€“Pt<sup>I</sup> complex instead of a Pt<sup>II</sup>ā€“Pt<sup>II</sup>ā€“Pt<sup>II</sup> derivative. Theoretical calculations (density functional theory) on similar model compounds are in agreement with the assigned oxidation states of the metal centers. The strong intermetallic interactions resulting in a Pt<sup>2</sup>ā€“Pt<sup>3</sup> metalā€“metal bond and the respective bonding mechanism were verified by employing a multitude of computational techniques (natural bond order analysis, the Laplacian of the electron density, and localized orbital locator profiles)

    Multinuclear Solid-State NMR and DFT Studies on Phosphanido-Bridged Diplatinum Complexes

    No full text
    Multinuclear (<sup>31</sup>P, <sup>195</sup>Pt, <sup>19</sup>F) solid-state NMR experiments on (<i>n</i>Bu<sub>4</sub>N)<sub>2</sub>[(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>PtĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>PtĀ­(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>] (<b>1</b>), [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>PtĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>PtĀ­(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>]Ā­(<i>Ptā€“Pt</i>) (<b>2</b>), and <i>cis</i>-PtĀ­(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>(PHPh<sub>2</sub>)<sub>2</sub> (<b>3</b>) were carried out under cross-polarization/magic-angle-spinning conditions or with the cross-polarization/Carrā€“Purcell Meiboomā€“Gill pulse sequence. Analysis of the principal components of the <sup>31</sup>P and <sup>195</sup>Pt chemical shift (CS) tensors of <b>1</b> and <b>2</b> reveals that the variations observed comparing the isotropic chemical shifts of <b>1</b> and <b>2</b>, commonly referred to as ā€œring effectā€, are mainly due to changes in the principal components oriented along the direction perpendicular to the Pt<sub>2</sub>P<sub>2</sub> plane. DFT calculations of <sup>31</sup>P and <sup>195</sup>Pt CS tensors confirmed the tensor orientation proposed from experimental data and symmetry arguments and revealed that the different values of the isotropic shieldings stem from differences in the paramagnetic and spinā€“orbit contributions

    Synthesis and Reactivity of the Unsaturated Trinuclear Phosphanido Complex [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt(PPh<sub>3</sub>)]

    No full text
    The reaction of [NBu<sub>4</sub>]Ā­[(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>PtĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>PtĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>PtĀ­(<i>O</i>,<i>O</i>-acac)] (48 VEC) with [HPPh<sub>3</sub>]Ā­[ClO<sub>4</sub>] gives the 46 VEC unsaturated [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt<sup>1</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>2</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>3</sup>(PPh<sub>3</sub>)]Ā­(Pt<sup>2</sup>ā€“Pt<sup>3</sup>) (<b>1</b>), a trinuclear compound endowed with a Ptā€“Pt bond. This compound displays amphiphilic behavior and reacts easily with nucleophiles L, yielding the saturated complexes [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(PPh<sub>3</sub>)Ā­L] [L = PPh<sub>3</sub> (<b>2</b>), py (<b>3</b>)]. The reaction with the electrophile [AgĀ­(OClO<sub>3</sub>)Ā­PPh<sub>3</sub>] affords the adduct <b>1</b>Ā·AgPPh<sub>3</sub>, which evolves, even at low temperature, to a mixture in which [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt<sup>III</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>III</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(PPh<sub>3</sub>)<sub>2</sub>]<sup>2+</sup>(Pt<sup>III</sup>ā€“Pt<sup>III</sup>) and <b>2</b> (plus silver metal) are present. The nucleophilic nature of <b>1</b> is also demonstrated through its reaction with <i>cis</i>-[PtĀ­(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>(THF)<sub>2</sub>], which results in the formation of [Pt<sub>4</sub>(Ī¼-PPh<sub>2</sub>)<sub>4</sub>(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>(PPh<sub>3</sub>)] (<b>4</b>). The structure and NMR features indicate that <b>1</b> can be better considered as a Pt<sup>II</sup>ā€“Pt<sup>III</sup>ā€“Pt<sup>I</sup> complex instead of a Pt<sup>II</sup>ā€“Pt<sup>II</sup>ā€“Pt<sup>II</sup> derivative. Theoretical calculations (density functional theory) on similar model compounds are in agreement with the assigned oxidation states of the metal centers. The strong intermetallic interactions resulting in a Pt<sup>2</sup>ā€“Pt<sup>3</sup> metalā€“metal bond and the respective bonding mechanism were verified by employing a multitude of computational techniques (natural bond order analysis, the Laplacian of the electron density, and localized orbital locator profiles)

    Formation of Pā€“C Bond through Reductive Coupling between Bridging Phosphido and Benzoquinolinate Groups. Isolation of Complexes of the Pt(II)/Pt(IV)/Pt(II) Sequence

    No full text
    The rational synthesis of dinuclear asymmetric phosphanido derivatives of palladium and platinumĀ­(II), [NBu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>MĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Mā€²(Īŗ<sup>2</sup>,<i>N</i>,<i>C</i>-C<sub>13</sub>H<sub>8</sub>N)] (R<sub>F</sub> = C<sub>6</sub>F<sub>5</sub>; M = Mā€² = Pt, <b>1</b>; M = Pt, Mā€² = Pd, <b>2</b>; M = Pd, Mā€² = Pt, <b>3</b>; M = Mā€² = Pd, <b>4</b>), is described. Addition of I<sub>2</sub> to <b>1</b>ā€“<b>4</b> gives complexes [(R<sub>F</sub>)<sub>2</sub>M<sup>II</sup>(Ī¼-PPh<sub>2</sub>)Ā­(Ī¼-I)Ā­Pd<sup>II</sup>{PPh<sub>2</sub>(C<sub>13</sub>H<sub>8</sub>N)}] (M = Mā€² = Pt, <b>6</b>; M = Pt, Mā€² = Pd, <b>7</b>; M = Mā€² = Pd, <b>8</b>; M = Pd, Mā€² = Pt <b>10</b>) which contain the aminophosphane PPh<sub>2</sub>(C<sub>13</sub>H<sub>8</sub>N) ligand formed through a Ph<sub>2</sub>P/C<sup>āˆ§</sup>N reductive coupling on the mixed valence MĀ­(II)ā€“Mā€²(IV) [NBu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>M<sup>II</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Mā€²<sup>IV</sup>(Īŗ<sup>2</sup>,<i>N</i>,<i>C</i>- C<sub>13</sub>H<sub>8</sub>N)Ā­I<sub>2</sub>] complexes, which were identified for M<sup>II</sup> = Pd, Mā€²<sup>IV</sup> = Pt (<b>9</b>), and isolated for M<sup>II</sup> = Pt, Mā€²<sup>IV</sup> = Pt (<b>5</b>). Complex <b>5</b> showed an unusual dynamic behavior consisting in the exchange of two phenyl groups bonded to different P atoms, as well as a ā€œthrough spaceā€ spinā€“spin coupling between <i>ortho</i>-F atoms of the pentafluorophenyl rings

    Oxidatively Induced Pā€“O Bond Formation through Reductive Coupling between Phosphido and Acetylacetonate, 8ā€‘Hydroxyquinolinate, and Picolinate Groups

    No full text
    The dinuclear anionic complexes [NBu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>M<sup>II</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Mā€²<sup>II</sup>(N<sup>āˆ§</sup>O)] (R<sub>F</sub> = C<sub>6</sub>F<sub>5</sub>. N<sup>āˆ§</sup>O = 8-hydroxyquinolinate, hq; M = Mā€² = Pt <b>1</b>; Pd <b>2</b>; M = Pt, Mā€² = Pd, <b>3</b>. N<sup>āˆ§</sup>O = <i>o</i>-picolinate, pic; M = Pt, Mā€² = Pt, <b>4</b>; Pd, <b>5</b>) are synthesized from the tetranuclear [NBu<sub>4</sub>]<sub>2</sub>[{(R<sub>F</sub>)<sub>2</sub>PtĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>MĀ­(Ī¼-Cl)}<sub>2</sub>] by the elimination of the bridging Cl as AgCl in acetone, and coordination of the corresponding <i>N</i>,<i>O</i>-donor ligand (<b>1</b>, <b>4</b>, and <b>5</b>) or connecting the fragments ā€œ<i>cis</i>-[(R<sub>F</sub>)<sub>2</sub>MĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>]<sup>2ā€“</sup>ā€ and ā€œMā€²(N<sup>āˆ§</sup>O)ā€ (<b>2</b> and <b>3</b>). The electrochemical oxidation of the anionic complexes <b>1</b>ā€“<b>5</b> occurring under HRMSĀ­(+) conditions gave the cations [(R<sub>F</sub>)<sub>2</sub>MĀ­(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Mā€²(N<sup>āˆ§</sup>O)]<sup>+</sup>, presumably endowed with a MĀ­(III),Mā€²(III) core. The oxidative addition of I<sub>2</sub> to the 8-hydroxyquinolinate complexes <b>1</b>ā€“<b>3</b> triggers a reductive coupling between a PPh<sub>2</sub> bridging ligand and the <i>N</i>,<i>O</i>-donor chelate ligand with formation of a Pā€“O bond and ends up in complexes of platinumĀ­(II) or palladiumĀ­(II) of formula [(R<sub>F</sub>)<sub>2</sub>M<sup>II</sup>(Ī¼-I)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Mā€²<sup>II</sup>(<i>P</i>,<i>N</i>-PPh<sub>2</sub>hq)], M = Mā€² = Pt <b>7</b>, Pd <b>8</b>; M = Pt, Mā€² = Pd, <b>9</b>. Complexes <b>7</b>ā€“<b>9</b> show a new Ph<sub>2</sub>P-OC<sub>9</sub>H<sub>6</sub>N (Ph<sub>2</sub>P-hq) ligand bonded to the metal center in a <i>P</i>,<i>N</i>-chelate mode. Analogously, the addition of I<sub>2</sub> to solutions of the <i>o</i>-picolinate complexes <b>4</b> and <b>5</b> causes the reductive coupling between a PPh<sub>2</sub> bridging ligand and the starting <i>N</i>,<i>O</i>-donor chelate ligand with formation of a Pā€“O bond, forming Ph<sub>2</sub>P-OC<sub>6</sub>H<sub>4</sub>NO (Ph<sub>2</sub>P-pic). In these cases, the isolated derivatives [NBu<sub>4</sub>]Ā­[(Ph<sub>2</sub>P-pic)Ā­(R<sub>F</sub>)Ā­Pt<sup>II</sup>(Ī¼-I)Ā­(Ī¼-PPh<sub>2</sub>)Ā­M<sup>II</sup>(R<sub>F</sub>)Ā­I] (M = Pt <b>10</b>, Pd <b>11</b>) are anionic, as a consequence of the coordination of the resulting new phosphane ligand (Ph<sub>2</sub>P-pic) as monodentate <i>P</i>-donor, and a terminal iodo group to the M atom. The oxidative addition of I<sub>2</sub> to [NBu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(acac)] (<b>6</b>) (acac = acetylacetonate) also results in a reductive coupling between the diphenylphosphanido and the acetylacetonate ligand with formation of a Pā€“O bond and synthesis of the complex [NBu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-I)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(Ph<sub>2</sub>P-acac)Ā­I] (<b>12</b>). The transformations of the starting complexes into the products containing the Pā€“O ligands passes through mixed valence MĀ­(II),Mā€²(IV) intermediates which were detected, for M = Mā€² = Pt, by spectroscopic and spectrometric measurements

    Addition of Nucleophiles to Phosphanido Derivatives of Pt(III): Formation of Pā€“C, Pā€“N, and Pā€“O Bonds

    No full text
    The reactivity of the dinuclear platinumĀ­(III) derivative [(R<sub>F</sub>)<sub>2</sub>Pt<sup>III</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Ā­Pt<sup>III</sup>(R<sub>F</sub>)<sub>2</sub>]<i>(Ptā€“Pt)</i> (R<sub>F</sub> = C<sub>6</sub>F<sub>5</sub>) (<b>1</b>) toward OH<sup>ā€“</sup>, N<sub>3</sub><sup>ā€“</sup>, and NCO<sup>ā€“</sup> was studied. The coordination of these nucleophiles to a metal center evolves with reductive coupling or reductive elimination between a bridging diphenylphosphanido group and OH<sup>ā€“</sup>, N<sub>3</sub><sup>ā€“</sup>, and NCO<sup>ā€“</sup> or C<sub>6</sub>F<sub>5</sub> groups and formation of Pā€“O, Pā€“N, or Pā€“C bonds. The addition of OH<sup>ā€“</sup> to <b>1</b> evolves with a reductive coupling with the incoming ligand, formation of a Pā€“O bond, and the synthesis of [NBu<sub>4</sub>]<sub>2</sub>[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-OPPh<sub>2</sub>)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>] (<b>3</b>). The addition of N<sub>3</sub><sup>ā€“</sup> takes place through two ways: (a) formation of the Pā€“N bond and reductive elimination of PPh<sub>2</sub>N<sub>3</sub> yielding [NBu<sub>4</sub>]<sub>2</sub>[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-N<sub>3</sub>)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>] (<b>4a</b>) and (b) formation of the Pā€“C bond and reductive coupling with one of the C<sub>6</sub>F<sub>5</sub> groups yielding [NBu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-N<sub>3</sub>)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)Ā­(PPh<sub>2</sub>R<sub>F</sub>)] (<b>4b</b>). Analogous behavior was shown in the addition of NCO<sup>ā€“</sup> to <b>1</b> which afforded [NBu<sub>4</sub>]<sub>2</sub>[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-NCO)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>] (<b>5a</b>) and [NBu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-NCO)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(R<sub>F</sub>)Ā­(PPh<sub>2</sub>R<sub>F</sub>)] (<b>5b</b>). In the reaction of the trinuclear complex [(R<sub>F</sub>)<sub>2</sub>Pt<sup>III</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>III</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Ā­Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>]<i>(Pt</i><sup><i>III</i></sup><i>ā€“Pt</i><sup><i>III</i></sup><i>)</i> (<b>2</b>) with OH<sup>ā€“</sup> or N<sub>3</sub><sup>ā€“</sup>, the coordination of the nucleophile takes place selectively at the central platinumĀ­(III) center, and the PPh<sub>2</sub>/OH<sup>ā€“</sup> or PPh<sub>2</sub>/N<sub>3</sub><sup>ā€“</sup> reductive coupling yields the trinuclear [NBu<sub>4</sub>]<sub>2</sub>[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(Ī¼-Ph<sub>2</sub>PO)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>II</sup>(Ī¼-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(R<sub>F</sub>)<sub>2</sub>] (<b>6</b>) and [NBu<sub>4</sub>]Ā­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>1</sup>(Ī¼<sub>3</sub>-Ph<sub>2</sub>PNPPh<sub>2</sub>)Ā­(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>2</sup>(Ī¼-PPh<sub>2</sub>)Ā­Pt<sup>3</sup>(R<sub>F</sub>)<sub>2</sub>]<i>(Pt</i><sup><i>2</i></sup><i>ā€“Pt</i><sup><i>3</i></sup><i>)</i> (<b>7</b>). Complex <b>7</b> is fluxional in solution, and an equilibrium consisting of Ptā€“Pt bond migration was ascertained by <sup>31</sup>P EXSY experiments
    corecore