9 research outputs found

    Sources of noise during accumulation of evidence in unrestrained and voluntarily head-restrained rats

    Get PDF
    Abstract Decision-making behavior is often characterized by substantial variability, but its source remains unclear. We developed a visual accumulation of evidence task designed to quantify sources of noise and to be performed during voluntary head restraint, enabling cellular resolution imaging in future studies. Rats accumulated discrete numbers of flashes presented to the left and right visual hemifields and indicated the side that had the greater number of flashes. Using a signaldetection theory-based model, we found that the standard deviation in their internal estimate of flash number scaled linearly with the number of flashes. This indicates a major source of noise that, surprisingly, is not consistent with the widely used 'drift-diffusion modeling' (DDM) approach but is instead closely related to proposed models of numerical cognition and counting. We speculate that this form of noise could be important in accumulation of evidence tasks generally

    Prefrontal Cortex HCN1 Channels Enable Intrinsic Persistent Neural Firing and Executive Memory Function

    Get PDF
    In many cortical neurons, HCN1 channels are the major contributors to I(h), the hyperpolarization-activated current, which regulates the intrinsic properties of neurons and shapes their integration of synaptic inputs, paces rhythmic activity, and regulates synaptic plasticity. Here, we examine the physiological role of I(h) in deep layer pyramidal neurons in mouse prefrontal cortex (PFC), focusing on persistent activity, a form of sustained firing thought to be important for the behavioral function of the PFC during working memory tasks. We find that HCN1 contributes to the intrinsic persistent firing that is induced by a brief depolarizing current stimulus in the presence of muscarinic agonists. Deletion of HCN1 or acute pharmacological blockade of I(h) decreases the fraction of neurons capable of generating persistent firing. The reduction in persistent firing is caused by the membrane hyperpolarization that results from the deletion of HCN1 or I(h) blockade, rather than a specific role of the hyperpolarization-activated current in generating persistent activity. In vivo recordings show that deletion of HCN1 has no effect on up states, periods of enhanced synaptic network activity. Parallel behavioral studies demonstrate that HCN1 contributes to the PFC-dependent resolution of proactive interference during working memory. These results thus provide genetic evidence demonstrating the importance of HCN1 to intrinsic persistent firing and the behavioral output of the PFC. The causal role of intrinsic persistent firing in PFC-mediated behavior remains an open question

    Distinct value computations support rapid sequential decisions

    No full text
    Abstract The value of the environment determines animals’ motivational states and sets expectations for error-based learning1–3. How are values computed? Reinforcement learning systems can store or cache values of states or actions that are learned from experience, or they can compute values using a model of the environment to simulate possible futures3. These value computations have distinct trade-offs, and a central question is how neural systems decide which computations to use or whether/how to combine them4–8. Here we show that rats use distinct value computations for sequential decisions within single trials. We used high-throughput training to collect statistically powerful datasets from 291 rats performing a temporal wagering task with hidden reward states. Rats adjusted how quickly they initiated trials and how long they waited for rewards across states, balancing effort and time costs against expected rewards. Statistical modeling revealed that animals computed the value of the environment differently when initiating trials versus when deciding how long to wait for rewards, even though these decisions were only seconds apart. Moreover, value estimates interacted via a dynamic learning rate. Our results reveal how distinct value computations interact on rapid timescales, and demonstrate the power of using high-throughput training to understand rich, cognitive behaviors

    Deep Cortical Layers Are Activated Directly by Thalamus

    No full text

    Fronto-parietal Cortical Circuits Encode Accumulated Evidence with a Diversity of Timescales

    No full text
    Decision-making in dynamic environments often involves accumulation of evidence, in which new information is used to update beliefs and select future actions. Using in vivo cellular resolution imaging in voluntarily head-restrained rats, we examined the responses of neurons in frontal and parietal cortices during a pulse-based accumulation of evidence task. Neurons exhibited activity that predicted the animal's upcoming choice, previous choice, and graded responses that reflected the strength of the accumulated evidence. The pulsatile nature of the stimuli enabled characterization of the responses of neurons to a single quantum (pulse) of evidence. Across the population, individual neurons displayed extensive heterogeneity in the dynamics of responses to pulses. The diversity of responses was sufficiently rich to form a temporal basis for accumulated evidence estimated from a latent variable model. These results suggest that heterogeneous, often transient sensory responses distributed across the fronto-parietal cortex may support working memory on behavioral timescales. VIDEO ABSTRACT
    corecore