460 research outputs found
Resonance-continuum interference in the di-photon Higgs signal at the LHC
A low mass Standard Model Higgs boson should be visible at the Large Hadron
Collider through its production via gluon-gluon fusion and its decay to two
photons. We compute the interference of this resonant process, gg -> H -> gamma
gamma, with the continuum QCD background, gg -> gamma gamma induced by quark
loops. Helicity selection rules suppress the effect, which is dominantly due to
the imaginary part of the two-loop gg -> gamma gamma scattering amplitude. The
interference is destructive, but only of order 5% in the Standard Model, which
is still below the 10-20% present accuracy of the total cross section
prediction. We comment on the potential size of such effects in other Higgs
models.Comment: 10 pages, 2 figure
Diffusion Process in a Flow
We establish circumstances under which the dispersion of passive contaminants
in a forced, deterministic or random, flow can be consistently interpreted as a
Markovian diffusion process. In case of conservative forcing the repulsive case
only, with bounded from below, is
unquestionably admitted by the compatibility conditions. A class of diffusion
processes is exemplified, such that the attractive forcing is allowed as well,
due to an appropriate compensation coming from the "pressure" term. The
compressible Euler flows form their subclass, when regarded as stochastic
processes. We establish circumstances under which the dispersion of passive
contaminants in a forced, deterministic or random, flow can be consistently
interpreted as a Markovian diffusion process. In case of conservative forcing
the repulsive case only, with bounded
from below, is unquestionably admitted by the compatibility conditions. A class
of diffusion processes is exemplified, such that the attractive forcing is
allowed as well, due to an appropriate compensation coming from the "pressure"
term. The compressible Euler flows form their subclass, when regarded as
stochastic processes.Comment: 10 pages, Late
Diffusion and Current of Brownian Particles in Tilted Piecewise Linear Potentials: Amplification and Coherence
Overdamped motion of Brownian particles in tilted piecewise linear periodic
potentials is considered. Explicit algebraic expressions for the diffusion
coefficient, current, and coherence level of Brownian transport are derived.
Their dependencies on temperature, tilting force, and the shape of the
potential are analyzed. The necessary and sufficient conditions for the
non-monotonic behavior of the diffusion coefficient as a function of
temperature are determined. The diffusion coefficient and coherence level are
found to be extremely sensitive to the asymmetry of the potential. It is
established that at the values of the external force, for which the enhancement
of diffusion is most rapid, the level of coherence has a wide plateau at low
temperatures with the value of the Peclet factor 2. An interpretation of the
amplification of diffusion in comparison with free thermal diffusion in terms
of probability distribution is proposed.Comment: To appear in PR
Numerical Schemes for Multivalued Backward Stochastic Differential Systems
We define some approximation schemes for different kinds of generalized
backward stochastic differential systems, considered in the Markovian
framework. We propose a mixed approximation scheme for a decoupled system of
forward reflected SDE and backward stochastic variational inequality. We use an
Euler scheme type, combined with Yosida approximation techniques.Comment: 13 page
Non-equilibrium phase transition in a sheared granular mixture
The dynamics of an impurity (or tracer particle) immersed in a dilute
granular gas under uniform shear flow is investigated. A non-equilibrium phase
transition is identified from an exact solution of the inelastic Boltzmann
equation for a granular binary mixture in the tracer limit, where the impurity
carries either a vanishing (disordered phase) or a finite (ordered phase)
fraction of the total kinetic energy of the system. In the disordered phase,
the granular temperature ratio (impurity "temperature" over that of the host
fluid) is finite, while it diverges in the ordered phase. To correctly capture
this extreme violation of energy equipartition, we show that the picture of an
impurity enslaved to the host fluid is insufficient
Broken symmetries and directed collective energy transport
We study the appearance of directed energy current in homogeneous spatially
extended systems coupled to a heat bath in the presence of an external ac field
E(t). The systems are described by nonlinear field equations. By making use of
a symmetry analysis we predict the right choice of E(t) and obtain directed
energy transport for systems with a nonzero topological charge Q. We
demonstrate that the symmetry properties of motion of topological solitons
(kinks and antikinks) are equivalent to the ones for the energy current.
Numerical simulations confirm the predictions of the symmetry analysis and,
moreover, show that the directed energy current drastically increases as the
dissipation parameter reduces. Our results generalize recent rigorous
theories of currents generated by broken time-space symmetries to the case of
interacting many-particle systems.Comment: 4 pages, 2 figure
Driven diffusion in a periodically compartmentalized tube: homogeneity versus intermittency of particle motion
We study the effect of a driving force F on drift and diffusion of a point Brownian particle in a tube formed by identical ylindrical compartments, which create periodic entropy barriers for the particle motion along the tube axis. The particle transport exhibits striking features: the effective mobility monotonically decreases with increasing F, and the effective diffusivity diverges as F → ∞, which indicates that the entropic effects in diffusive transport are enhanced by the driving force. Our consideration is based on two different scenarios of the particle motion at small and large F, homogeneous and intermittent, respectively. The scenarios are deduced from the careful analysis of statistics of the particle transition times between neighboring openings. From this qualitative picture, the limiting small-F and large-F behaviors of the effective mobility and diffusivity are derived analytically. Brownian dynamics simulations are used to find these quantities at intermediate values of the driving force for various compartment lengths and opening radii. This work shows that the driving force may lead to qualitatively different anomalous transport features, depending on the geometry design
Using a New Odour-Baited Device to Explore Options for Luring and Killing Outdoor-Biting Malaria Vectors: A Report on Design and Field Evaluation of the Mosquito Landing Box.
Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the 'Mosquito Landing Box' (MLB), which is baited with human odours and treated with mosquitocidal agents. The findings are used to explore technical options and challenges relevant to luring and killing outdoor-biting malaria vectors in endemic settings. Field experiments were conducted in Tanzania to assess if wild host-seeking mosquitoes 1) visited the MLBs, 2) stayed long or left shortly after arrival at the device, 3) visited the devices at times when humans were also outdoors, and 4) could be killed by contaminants applied on the devices. Odours suctioned from volunteer-occupied tents were also evaluated as a potential low-cost bait, by comparing baited and unbaited MLBs. There were significantly more Anopheles arabiensis, An. funestus, Culex and Mansonia mosquitoes visiting baited MLB than unbaited controls (P<=0.028). Increasing sampling frequency from every 120 min to 60 and 30 min led to an increase in vector catches of up to 3.6 fold (P<=0.002), indicating that many mosquitoes visited the device but left shortly afterwards. Outdoor host-seeking activity of malaria vectors peaked between 7:30 and 10:30pm, and between 4:30 and 6:00am, matching durations when locals were also outdoors. Maximum mortality of mosquitoes visiting MLBs sprayed or painted with formulations of candidate mosquitocidal agent (pirimiphos-methyl) was 51%. Odours from volunteer occupied tents attracted significantly more mosquitoes to MLBs than controls (P<0.001). While odour-baited devices such as the MLBs clearly have potential against outdoor-biting mosquitoes in communities where LLINs are used, candidate contaminants must be those that are effective at ultra-low doses even after short contact periods, since important vector species such as An. arabiensis make only brief visits to such devices. Natural human odours suctioned from occupied dwellings could constitute affordable sources of attractants to supplement odour baits for the devices. The killing agents used should be environmentally safe, long lasting, and have different modes of action (other than pyrethroids as used on LLINs), to curb the risk of physiological insecticide resistance
Anatomy of the AGN in NGC 5548. III. The high-energy view with NuSTAR and INTEGRAL
We describe the analysis of the seven broad-band X-ray continuum observations of the archetypal Seyfert 1 galaxy NGC 5548 that were obtained with XMM-Newton or Chandra, simultaneously with high-energy (>10 keV) observations with NuSTAR and INTEGRAL. These data were obtained as part of a multiwavelength campaign undertaken from the summer of 2013 till early 2014. We find evidence of a high-energy cut-off in at least one observation, which we attribute to thermal Comptonization, and a constant reflected component that is likely due to neutral material at least a few light months away from the continuum source. We confirm the presence of strong, partial covering X-ray absorption as the explanation for the sharp decrease in flux through the soft X-ray band. The obscurers appear to be variable in column density and covering fraction on time scales as short as weeks. A fit of the average spectrum over the range 0.3–400 keV with a realistic Comptonization model indicates the presence of a hot corona with a temperature of 40^(+40)_(-10) keV and an optical depth of 2.7^(+0.7)_(-1.2) if a spherical geometry is assumed
- …
