251 research outputs found

    Extracellular Domain N-Glycosylation Controls Human Thrombopoietin Receptor Cell Surface Levels

    Get PDF
    The thrombopoietin receptor (TpoR) is a type I transmembrane protein that mediates the signaling functions of thrombopoietin (Tpo) in regulating megakaryocyte differentiation, platelet formation, and hematopoietic stem cell renewal. We probed the role of each of the four extracellular domain putative N-glycosylation sites for cell surface localization and function of the receptor. Single N-glycosylation mutants at any of the four sites were able to acquire the mature N-glycosylated pattern, but exhibited a decreased Tpo-dependent JAK2–STAT response in stably transduced Ba/F3 or Ba/F3-JAK2 cell lines. The ability of JAK2 to promote cell surface localization and stability of TpoR required the first N-glycosylation site (Asn117). In contrast, the third N-glycosylation site (Asn298) decreased receptor maturation and stability. TpoR mutants lacking three N-glycosylation sites were defective in maturation, but N-glycosylation on the single remaining site could be detected by sensitivity to PNGaseF. The TpoR mutant defective in all four N-glycosylation sites was severely impaired in plasma membrane localization and was degraded by the proteasome. N-glycosylation receptor mutants are not misfolded as, once localized on the cell surface in overexpression conditions, they can bind and respond to Tpo. Our data indicate that extracellular domain N-glycosylation sites regulate in a combinatorial manner cell surface localization of TpoR. We discuss how mutations around TpoR N-glycosylation sites might contribute to inefficient receptor traffic and disease

    Neurobiology of Vascular Dementia

    Get PDF
    Vascular dementia is, in its current conceptual form, a distinct type of dementia with a spectrum of specific clinical and pathophysiological features. However, in a very large majority of cases, these alterations occur in an already aged brain, characterized by a milieu of cellular and molecular events common for different neurodegenerative diseases. The cell signaling defects and molecular dyshomeostasis might lead to neuronal malfunction prior to the death of neurons and the alteration of neuronal networks. In the present paper, we explore some of the molecular mechanisms underlying brain malfunction triggered by cerebrovascular disease and risk factors. We suggest that, in the age of genetic investigation and molecular diagnosis, the concept of vascular dementia needs a new approach

    The Antiviral Action of Interferon Is Potentiated by Removal of the Conserved IRTAM Domain of the IFNAR1 Chain of the Interferon α/ÎČ Receptor: Effects on JAK-STAT Activation and Receptor Down-regulation

    Get PDF
    The first cloned chain (IFNAR1) of the human interferon-α (IFNα) receptor acts as a species-specific transducer for type I IFN action when transfected into heterologous mouse cells. Stably transfected mouse L929 cell lines expressing truncation mutants of the intracellular domain of the human IFNAR1 chain were tested for biological responses to human IFNα. Deletion of the intracellular domain resulted in a complete loss of sensitivity to the biological activity of human IFN but markedly increased IFNAR1 cell surface expression, demonstrating that the intracellular domain is required for biological function and contains a domain that negatively regulates its cell surface expression. Removal of the conserved membrane distal 16-amino-acid IRTAM (InterferonReceptorTyrosineActivationMotif) sequence: (1) increased sensitivity to IFNα's antiviral activity, (2) increased the rapid IFNα-dependent formation of STAT-containing DNA-binding complexes, (3) prolonged tyrosine phosphorylation kinetics of the JAK-STAT pathway, and (4) blocked the IFN-dependent down-regulation of the IFNAR1 chain. These results indicate that the IRTAM negatively regulates signaling events required for the induction of IFN's biological actions via regulating receptor down-regulation

    A global effort to dissect the human genetic basis of resistance to SARS-CoV-2 infection

    Get PDF
    SARS-CoV-2 infections display tremendous interindividual variability, ranging from asymptomatic infections to life-threatening disease. Inborn errors of, and autoantibodies directed against, type I interferons (IFNs) account for about 20% of critical COVID-19 cases among SARS-CoV-2-infected individuals. By contrast, the genetic and immunological determinants of resistance to infection per se remain unknown. Following the discovery that autosomal recessive deficiency in the DARC chemokine receptor confers resistance to Plasmodium vivax, autosomal recessive deficiencies of chemokine receptor 5 (CCR5) and the enzyme FUT2 were shown to underlie resistance to HIV-1 and noroviruses, respectively. Along the same lines, we propose a strategy for identifying, recruiting, and genetically analyzing individuals who are naturally resistant to SARS-CoV-2 infection.The Laboratory of Human Genetics of Infectious Diseases is supported by the National Institutes of Health (NIH) (R01AI088364), the National Center for Advancing Translational Sciences (NCATS), NIH Clinical and Translational Science Award (CTSA) program (UL1TR001866), a Fast Grant from Emergent Ventures, Mercatus Center at George Mason University, the Yale Center for Mendelian Genomics and the GSP Coordinating Center funded by the National Human Genome Research Institute (NHGRI) (UM1HG006504 and U24HG008956), the Fisher Center for Alzheimer’s Research Foundation, the Meyer Foundation, the French National Research Agency (ANR) under the Investments for the Future program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (FRM) (EQU201903007798), the FRM and ANR GENCOVID project (ANR-20-COVI-0003), ANRS-COV05, the Fondation du Souffle, the Square Foundation, Grandir - Fonds de solidaritĂ© pour l’enfance, the SCOR Corporate Foundation for Science, the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, Institut National de la SantĂ© et de la Recherche MĂ©dicale (INSERM), and the University of Paris. E.A. is supported by research grants from the European Commission’s Horizon 2020 research and innovation program (IMMUNAID, grant no. 779295, CURE, grant no. 767015 and TO_AITION grant no. 848146) and the Hellenic Foundation for Research and Innovation (INTERFLU, no. 1574). C.O.F. is supported in part by the Science Foundation Ireland COVID-19 Program. G.N. is supported by a grant awarded to Regione Lazio (Research Group Projects 2020) no. A0375-2020-36663, GecoBiomark. A.P. is supported in part by the Horizon 2020 program under grant no. 824110 (EasiGenomics grant no. COVID-19/PID12342) and the CERCA Program/Generalitat de Catalunya. H.S. is supported in part by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health. A.S. is supported in part by the European Union’s Horizon 2020 research and innovation program (Marie Sklodowska-Curie grant no. 789645)

    An activating mutation in the CSF3R gene induces a hereditary chronic neutrophilia

    Get PDF
    We identify an autosomal mutation in the CSF3R gene in a family with a chronic neutrophilia. This T617N mutation energetically favors dimerization of the granulocyte colony-stimulating factor (G-CSF) receptor transmembrane domain, and thus, strongly promotes constitutive activation of the receptor and hypersensitivity to G-CSF for proliferation and differentiation, which ultimately leads to chronic neutrophilia. Mutant hematopoietic stem cells yield a myeloproliferative-like disorder in xenotransplantation and syngenic mouse bone marrow engraftment assays. The survey of 12 affected individuals during three generations indicates that only one patient had a myelodysplastic syndrome. Our data thus indicate that mutations in the CSF3R gene can be responsible for hereditary neutrophilia mimicking a myeloproliferative disorder

    The ubiquitin-mediated degradation of Jak1 modulates osteoclastogenesis by limiting interferon-beta-induced inhibitory signaling.

    Get PDF
    Interferons (IFNs) have been shown to negatively regulate osteoclastogenesis. In a proteomic study to assess protein expression during osteoclastogenesis, we discovered that the expression level of Jak1 was significantly decreased during the early stage of osteoclast differentiation from mouse bone marrow macrophages (BMMs) upon stimulation with receptor activator of nuclear factor kappaB ligand (RANKL). RANKL induced Jak1 ubiquitination, and a proteasome inhibitor MG132 efficiently blocked the RANKL-induced degradation of Jak1. The expression level of Jak1 correlated with the susceptibility of osteoclast precursors to the negative regulatory effects of IFN-beta on osteoclastogenesis, since preosteoclasts (pOCs) in which Jak1 expression is significantly reduced could proceed with osteoclastogenesis in the presence of IFN-beta. Forced down-regulation of Jak1 by small interfering RNA (siRNA) resulted in the efficient osteoclast differentiation of BMMs in the presence of inhibitory IFN-beta, while overexpression of Jak1 in pOCs elicited IFN-beta-dependent inhibition of osteoclastogenesis. Furthermore, we found that the IFN-beta-induced inhibition of osteoclastogenesis required STAT3 downstream of Jak1. These data suggest that the regulation of Jak1 expression during osteoclast differentiation might serve as an intrinsic mechanism that determines osteoclast lineage commitment by modulating the negative regulation by IFN-beta

    JAK2 V617F Constitutive Activation Requires JH2 Residue F595: A Pseudokinase Domain Target for Specific Inhibitors

    Get PDF
    The JAK2 V617F mutation present in over 95% of Polycythemia Vera patients and in 50% of Essential Thrombocythemia and Primary Myelofibrosis patients renders the kinase constitutively active. In the absence of a three-dimensional structure for the full-length protein, the mechanism of activation of JAK2 V617F has remained elusive. In this study, we used functional mutagenesis to investigate the involvement of the JH2 αC helix in the constitutive activation of JAK2 V617F. We show that residue F595, located in the middle of the αC helix of JH2, is indispensable for the constitutive activity of JAK2 V617F. Mutation of F595 to Ala, Lys, Val or Ile significantly decreases the constitutive activity of JAK2 V617F, but F595W and F595Y are able to restore it, implying an aromaticity requirement at position 595. Substitution of F595 to Ala was also able to decrease the constitutive activity of two other JAK2 mutants, T875N and R683G, as well as JAK2 K539L, albeit to a lower extent. In contrast, the F595 mutants are activated by erythropoietin-bound EpoR. We also explored the relationship between the dimeric conformation of EpoR and several JAK2 mutants. Since residue F595 is crucial to the constitutive activation of JAK2 V617F but not to initiation of JAK2 activation by cytokines, we suggest that small molecules that target the region around this residue might specifically block oncogenic JAK2 and spare JAK2 wild-type
    • 

    corecore