140 research outputs found

    Photo-identification confirms that humpback whales (Megaptera novaeangliae) from eastern Australia migrate past New Zealand but indicates low levels of interchange with breeding grounds of Oceania

    Get PDF
    Recent photo-identification and genetic studies have identified at least five discrete breeding populations in Australia and Oceania: western Australia (D), eastern Australia (E (i)), New Caledonia (E (ii)), Tonga (E (iii)), French Polynesia and the Cook Islands (F). Also evident are low levels of intermingling among breeding populations consistent with the degree of genetic differentiation. Photo-identification has confirmed linkages between Area V feeding areas and eastern Australia breeding grounds and one genotype match has been reported between Area V feeding areas and Oceania breeding grounds. Recent abundance estimates show strong increases in the eastern Australian population, and some recovery in the New Caledonia and Tonga populations, but with little evidence of recovery at other known Oceania breeding grounds or New Zealand. Studies to date have provided no conclusive evidence of the migratory destination of humpback whales passing through New Zealand waters en route between Antarctic feeding areas and tropical breeding grounds. Photo-identification comparisons were undertaken between humpback whale fluke catalogues from eastern Australia (EA, 1315), Oceania east (OE, 513), Oceania west (OW, 166) and New Zealand (NZ, 13). Five matches were found between OE/OW, four matches between OW/EA and three matches between NZ/EA. The data are used to investigate and discuss the migratory destination and breeding ground migratory terchange of humpback whales travelling through New Zealand waters. The data confirm that humpback whales with site fidelity to eastern Australia migrate past New Zealand including through the Cook Strait and Foveaux Strait

    Organic pollutants in sea-surface microlayer and aerosol in thecoastal environment of Leghorn—(Tyrrhenian Sea)

    Get PDF
    The levels of dissolved and particle-associated n-alkanes, alkylbenzenes, phthalates, PAHs, anionic surfactants and surfactant fluorescent organic matter ŽSFOM. were measured in sea-surface microlayer ŽSML. and sub-surface water ŽSSL. samples collected in the Leghorn marine environment in September and October 1999. Nine stations, located in the Leghorn harbour and at increasing distances from the Port, were sampled three times on the same day. At all the stations, SML concentrations of the selected organic compounds were significantly higher than SSL values and the enrichment factors ŽEFsSML concentrationrSSL concentration. were greater in the particulate phase than in the dissolved phase. SML concentrations varied greatly among the sampling sites, the highest levels Žn-alkanes 3674 mgrl, phthalates 177 mgrl, total PAHs 226 mgrl. being found in the particulate phase in the Leghorn harbour. To improve the knowledge on pollutant exchanges between sea-surface waters and atmosphere, the validity of spray drop adsorption model ŽSDAM. was verified for SFOM, surface-active agents, such as phthalates, and compounds which can interact with SFOM, such as n-alkanes and PAHs. q2001 Elsevier Science B.V. All rights reserved

    Orexin-A and Orexin-B During the Postnatal Development of the Rat Brain

    Get PDF
    Orexin-A and orexin-B are hypothalamic neuropeptides isolated from a small group of neurons in the hypothalamus, which project their axons to all major parts of the central nervous system. Despite the extensive information about orexin expression and function at different parts of the nervous system in adults, data about the development and maturation of the orexin system in the brain are a bit contradictory and insufficient. A previous study has found expression of orexins in the hypothalamus after postnatal day 15 only, while others report orexins detection at embryonic stages of brain formation. In the present study, we investigated the distribution of orexin-A and orexin-B neuronal cell bodies and fibers in the brain at three different postnatal stages: 1-week-, 2-week-old and adult rats. By means of immunohistochemical techniques, we demonstrated that a small subset of cells in the lateral hypothalamus, and the perifornical and periventricular areas were orexin-A and orexin-B positive not only in 2-week-old and adult rats but also in 1-week-old animals. In addition, orexin-A and orexin-B expressing neuronal varicosities were found in many other brain regions. These results suggest that orexin-A and orexin-B play an important role in the early postnatal brain development. The widespread distribution of orexinergic projections through all these stages may imply an involvement of the two neurotransmitters in a large variety of physiological and behavioral processes also including higher brain functions like learning and memory

    NMDA Receptors Mediate Synaptic Competition in Culture

    Get PDF
    Background: Activity through NMDA type glutamate receptors sculpts connectivity in the developing nervous system. This topic is typically studied in the visual system in vivo, where activity of inputs can be differentially regulated, but in which individual synapses are difficult to visualize and mechanisms governing synaptic competition can be difficult to ascertain. Here, we develop a model of NMDA-receptor dependent synaptic competition in dissociated cultured hippocampal neurons. Methodology/Principal Findings: GluN1-/- (KO) mouse hippocampal neurons lacking the essential NMDA receptor subunit were cultured alone or cultured in defined ratios with wild type (WT) neurons. The absence of functional NMDA receptors did not alter neuron survival. Synapse development was assessed by immunofluorescence for postsynaptic PSD-95 family scaffold and apposed presynaptic vesicular glutamate transporter VGlut1. Synapse density was specifically enhanced onto minority wild type neurons co-cultured with a majority of GluN1-/- neighbour neurons, both relative to the GluN1-/neighbours and relative to sister pure wild type cultures. This form of synaptic competition was dependent on NMDA receptor activity and not conferred by the mere physical presence of GluN1. In contrast to these results in 10 % WT and 90

    Conserved Expression of the Glutamate NMDA Receptor 1 Subunit Splice Variants during the Development of the Siberian Hamster Suprachiasmatic Nucleus

    Get PDF
    Glutamate neurotransmission and the N-methyl-D-aspartate receptor (NMDAR) are central to photic signaling to the master circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). NMDARs also play important roles in brain development including visual input circuits. The functional NMDAR is comprised of multiple subunits, but each requiring the NR1 subunit for normal activity. The NR1 can be alternatively spliced to produce isoforms that confer different functional properties on the NMDAR. The SCN undergoes extensive developmental changes during postnatal life, including synaptogenesis and acquisition of photic signaling. These changes are especially important in the highly photoperiodic Siberian hamster, in which development of sensitivity to photic cues within the SCN could impact early physiological programming. In this study we examined the expression of NR1 isoforms in the hamster at different developmental ages. Gene expression in the forebrain was quantified by in situ hybridization using oligonucleotide probes specific to alternatively spliced regions of the NR1 heteronuclear mRNA, including examination of anterior hypothalamus, piriform cortex, caudate-putamen, thalamus and hippocampus. Gene expression analysis within the SCN revealed the absence of the N1 cassette, the presence of the C2 cassette alone and the combined absence of C1 and C2 cassettes, indicating that the dominant splice variants are NR1-2a and NR1-4a. Whilst we observe changes at different developmental ages in levels of NR1 isoform probe hybridization in various forebrain structures, we find no significant changes within the SCN. This suggests that a switch in NR1 isoform does not underlie or is not produced by developmental changes within the hamster SCN. Consistency of the NR1 isoforms would ensure that the response of the SCN cells to photic signals remains stable throughout life, an important aspect of the function of the SCN as a responder to environmental changes in quality/quantity of light over the circadian day and annual cycle

    Evolutionary Developmental Biology and Human Language Evolution: Constraints on Adaptation

    Get PDF

    Biomarkers of a five-domain translational substrate for schizophrenia and schizoaffective psychosis

    Get PDF

    The differential influence of protein kinase inhibitors on retinal arbor morphology and eye-specific stripes in the frog retinotectal system

    No full text
    We investigated retinal axon morphology and eye-specific afferent termination zones in the optic tectum of three-eyed tadpoles that were chronically treated with protein kinase inhibitors. The kinase inhibitors sphingosine, H-7, and phorbol ester, which down-regulates protein kinase C with chronic exposure, were applied to the tecta in a slow release plastic, Elvax. In vivo protein phosphorylation assays in drug-treated tadpoles indicated that the treatments decreased 32P incorporation into some protein bands by as much as 60%. Although the drugs did not cause a desegregation of the eye-specific stripes, treated retinal axon arbors covered about half the area covered by untreated arbors or arbors treated with inactive analogs of the drugs. We conclude that eye-specific segregation can be maintained under conditions that markedly alter retinal ganglion cell axon arbor size and that significantly perturb protein phosphorylation. Furthermore, we conclude that the protein kinase(s) that we blocked with these treatments is involved in the growth of axon arbors
    corecore