70 research outputs found

    Thoughts on oral tradition

    Get PDF
    It is easier, I think, to say what oral tradition can be rather than what it is. I have been working in the field of Celtic literature for a dozen or so years, and have been moving in and out of more or less oral genres from the start. If, as I do, you are basically working with texts, it is of course the "more or less" that shapes one's sense of orality, and mine has shifted with each new project.Not

    Introduction: Romanticism, Travel and the Celtic Languages

    Get PDF

    Tuberculosis in Pediatric Antiretroviral Therapy Programs in Low- and Middle-Income Countries: Diagnosis and Screening Practices

    Get PDF
    Background The global burden of childhood tuberculosis (TB) is estimated to be 0.5 million new cases per year. Human immunodeficiency virus (HIV)-infected children are at high risk for TB. Diagnosis of TB in HIV-infected children remains a major challenge. Methods We describe TB diagnosis and screening practices of pediatric antiretroviral treatment (ART) programs in Africa, Asia, the Caribbean, and Central and South America. We used web-based questionnaires to collect data on ART programs and patients seen from March to July 2012. Forty-three ART programs treating children in 23 countries participated in the study. Results Sputum microscopy and chest Radiograph were available at all programs, mycobacterial culture in 40 (93%) sites, gastric aspiration in 27 (63%), induced sputum in 23 (54%), and Xpert MTB/RIF in 16 (37%) sites. Screening practices to exclude active TB before starting ART included contact history in 41 sites (84%), symptom screening in 38 (88%), and chest Radiograph in 34 sites (79%). The use of diagnostic tools was examined among 146 children diagnosed with TB during the study period. Chest Radiograph was used in 125 (86%) children, sputum microscopy in 76 (52%), induced sputum microscopy in 38 (26%), gastric aspirate microscopy in 35 (24%), culture in 25 (17%), and Xpert MTB/RIF in 11 (8%) children. Conclusions Induced sputum and Xpert MTB/RIF were infrequently available to diagnose childhood TB, and screening was largely based on symptom identification. There is an urgent need to improve the capacity of ART programs in low- and middle-income countries to exclude and diagnose TB in HIV-infected childre

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Robust SARS-CoV-2 T cell responses with common TCR?? motifs toward COVID-19 vaccines in patients with hematological malignancy impacting B cells

    Get PDF
    Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∌26%), increased to 59%–75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response
    • 

    corecore