13 research outputs found

    Interferon lambda 4 impacts the genetic diversity of hepatitis C virus

    Get PDF
    Hepatitis C virus (HCV) is a highly variable pathogen that frequently establishes chronic infection. This genetic variability is affected by the adaptive immune response but the contribution of other host factors is unclear. Here, we examined the role played by interferon lambda-4 (IFN-λ4) on HCV diversity; IFN-λ4 plays a crucial role in spontaneous clearance or establishment of chronicity following acute infection. We performed viral genome-wide association studies using human and viral data from 485 patients of white ancestry infected with HCV genotype 3a. We demonstrate that combinations of host genetic variants, which determine IFN-λ4 protein production and activity, influence amino acid variation across the viral polyprotein - not restricted to specific viral proteins or HLA restricted epitopes - and modulate viral load. We also observed an association with viral di-nucleotide proportions. These results support a direct role for IFN-λ4 in exerting selective pressure across the viral genome, possibly by a novel mechanism

    A cost-effectiveness analysis of shortened direct-acting antiviral treatment in genotype 1 noncirrhotic treatment-naive patients with chronic hepatitis C virus

    Get PDF
    BACKGROUND:Direct-acting antivirals are successful in curing hepatitis C virus infection in more than 95% of patients treated for 12 weeks, but they are expensive. Shortened treatment durations, which may have lower cure rates, have been proposed to reduce costs. OBJECTIVES:To evaluate the lifetime cost-effectiveness of different shortened treatment durations for genotype 1 noncirrhotic treatment-naive patients. METHODS:Assuming a UK National Health Service perspective, we used a probabilistic decision tree and Markov model to compare 3 unstratified shortened treatment durations (8, 6, and 4 weeks) against a standard 12-week treatment duration. Patients failing shortened first-line treatment were re-treated with a 12-week treatment regimen. Parameter inputs were taken from published studies. RESULTS:The 8-week treatment duration had an expected incremental net monetary benefit of £7737 (95% confidence interval £3242-£11 819) versus the standard 12-week treatment, per 1000 patients. The 6-week treatment had a positive incremental net monetary benefit, although some uncertainty was observed. The probability that the 8- and 6-week treatments were the most cost-effective was 56% and 25%, respectively, whereas that for the 4-week treatment was 17%. Results were generally robust to sensitivity analyses, including a threshold analysis that showed that the 8-week treatment was the most cost-effective at all drug prices lower than £40 000 per 12-week course. CONCLUSIONS:Shortening treatments licensed for 12 weeks to 8 weeks is cost-effective in genotype 1 noncirrhotic treatment-naive patients. There was considerable uncertainty in the estimates for 6- and 4-week treatments, with some indication that the 6-week treatment may be cost-effective

    A large effective population size for established within-host influenza virus infection

    Get PDF
    Strains of the influenza virus form coherent global populations, yet exist at the level of single infections in individual hosts. The relationship between these scales is a critical topic for understanding viral evolution. Here we investigate the within-host relationship between selection and the stochastic effects of genetic drift, estimating an effective population size of infection N-e for influenza infection. Examining whole-genome sequence data describing a chronic case of influenza B in a severely immunocompromised child we infer an N-e of 2.5 x 10(7) (95% confidence range 1.0 x 10(7) to 9.0 x 10(7)) suggesting that genetic drift is of minimal importance during an established influenza infection. Our result, supported by data from influenza A infection, suggests that positive selection during within-host infection is primarily limited by the typically short period of infection. Atypically long infections may have a disproportionate influence upon global patterns of viral evolution.Peer reviewe

    Viral genome wide association study identifies novel hepatitis C virus polymorphisms associated with sofosbuvir treatment failure

    Get PDF
    Persistent hepatitis C virus (HCV) infection is a major cause of chronic liver disease, worldwide. With the development of direct-acting antivirals, treatment of chronically infected patients has become highly effective, although a subset of patients responds less well to therapy. Sofosbuvir is a common component of current de novo or salvage combination therapies, that targets the HCV NS5B polymerase. We use pre-treatment whole-genome sequences of HCV from 507 patients infected with HCV subtype 3a and treated with sofosbuvir containing regimens to detect viral polymorphisms associated with response to treatment. We find three common polymorphisms in non-targeted HCV NS2 and NS3 proteins are associated with reduced treatment response. These polymorphisms are enriched in post-treatment HCV sequences of patients unresponsive to treatment. They are also associated with lower reductions in viral load in the first week of therapy. Using in vitro short-term dose-response assays, these polymorphisms do not cause any reduction in sofosbuvir potency, suggesting an indirect mechanism of action in decreasing sofosbuvir efficacy. The identification of polymorphisms in NS2 and NS3 proteins associated with poor treatment outcomes emphasises the value of systematic genome-wide analyses of viruses in uncovering clinically relevant polymorphisms that impact treatment

    Interferon lambda 4 impacts the genetic diversity of hepatitis C virus

    Get PDF
    Hepatitis C virus (HCV) is a highly variable pathogen that frequently establishes chronic infection. This genetic variability is affected by the adaptive immune response but the contribution of other host factors is unclear. Here, we examined the role played by interferon lambda-4 (IFN-λ4) on HCV diversity; IFN-λ4 plays a crucial role in spontaneous clearance or establishment of chronicity following acute infection. We performed viral genome-wide association studies using human and viral data from 485 patients of white ancestry infected with HCV genotype 3a. We demonstrate that combinations of host genetic variants, which determine IFN-λ4 protein production and activity, influence amino acid variation across the viral polyprotein - not restricted to specific viral proteins or HLA restricted epitopes - and modulate viral load. We also observed an association with viral di-nucleotide proportions. These results support a direct role for IFN-λ4 in exerting selective pressure across the viral genome, possibly by a novel mechanism

    Efficacy of NS5A inhibitors against unusual and potentially difficult-to-treat HCV subtypes commonly found in sub Saharan Africa and South East Asia

    No full text
    Background Aims: The efficacy of NS5A inhibitors against several less common subtypes of hepatitis C virus (HCV) is poorly characterised. Some subtypes including 3b, 3g, 6u and 6v commonly harbour amino acid residues as wild type in NS5A that may confer resistance to direct acting antivirals (DAAs) in other common subtypes. Data from patients also suggest that 1l and 4r with amino acid substitutions at positions 28-31 and 93 in NS5A are relatively resistant to DAA therapy. Methods: In this study, we tested the efficacy of daclatasvir, elbasvir, ledipasvir, pibrentasvir and velpatasvir against these subtypes using the SGR-JFH1 replicon backbone. Results: NS5A inhibitors showed different levels of efficacy with only pibrentasvir effective against all tested subtypes. Daclatasvir and ledipasvir were ineffective against 6u and 6v (half maximal effective concentration [EC50] values of 239-321 nM) while 3b and 3g were only susceptible to pibrentasvir. Analysis of effects of individual mutations indicated that Q30R in 1l increased the EC50 of ledipasvir by 18 fold, conferring intermediate resistance, while those of L31M and Y93H in 4r induced increases in EC50s of 2100- and 3575-fold (high level resistance). Conclusion: The high ledipasvir EC50 values of 1l with the Q30R substitution, 4r L31M and 4r Y93H may explain the treatment failure in patients who were infected with these viruses and treated with ledipasvir + sofosbuvir. This study also shows the ineffectiveness of the first generation NS5A inhibitors against 6u and 6v, and confirms the inherent resistance of 3b and 3g to most NS5A inhibitors. Clinical studies to confirm in vivo sensitivity to NS5A inhibitors are urgently needed so that rational, effective treatment strategies may be developed for unusual subtypes.</br

    PHYLOSCANNER: inferring transmission from within- and between-host pathogen genetic diversity

    Get PDF
    A central feature of pathogen genomics is that different infectious particles (virions, bacterial cells, etc.) within an infected individual may be genetically distinct, with patterns of relatedness amongst infectious particles being the result of both within-host evolution and transmission from one host to the next. Here we present a new software tool, phyloscanner, which analyses pathogen diversity from multiple infected hosts. phyloscanner provides unprecedented resolution into the transmission process, allowing inference of the direction of transmission from sequence data alone. Multiply infected individuals are also identified, as they harbour subpopulations of infectious particles that are not connected by within-host evolution, except where recombinant types emerge. Low-level contamination is flagged and removed. We illustrate phyloscanner on both viral and bacterial pathogens, namely HIV-1 sequenced on Illumina and Roche 454 platforms, HCV sequenced with the Oxford Nanopore MinION platform, and Streptococcus pneumoniae with sequences from multiple colonies per individual. phyloscanner is available from https://github.com/BDI-pathogens/phyloscanner

    Impact of IFNL4 genotype on interferon-stimulated gene expression during daa therapy for Hepatitis C

    No full text
    New directly acting antivirals (DAAs) provide very high cure rates in most patients infected by hepatitis C virus (HCV). However, some patient groups have been relatively harder to treat including those with cirrhosis or infected with HCV genotype 3. In the recent BOSON trial, genotype 3, cirrhotic patients receiving a 16 week course of sofosbuvir and ribavirin had a sustained virologic response rate (SVR) of around 50%. In cirrhotic patients, IFNL4 CC genotype was significantly associated with SVR. This genotype was also associated with a lower interferon‐stimulated gene (ISG) signature in peripheral blood and in liver at baseline. Unexpectedly, patients with the CC genotype showed a dynamic increase in ISG expression between weeks 4 and 16 of DAA therapy, while the reverse was true for non‐CC patients. These data provide an important dynamic link between host genotype and phenotype in HCV therapy also potentially relevant to naturally acquired infection

    ve-SEQ: Robust, unbiased enrichment for streamlined detection and whole-genome sequencing of HCV and other highly diverse pathogens

    No full text
    The routine availability of high-depth virus sequence data would allow the sensitive detection of resistance-associated variants that can jeopardize HIV or hepatitis C virus (HCV) treatment. We introduce ve-SEQ, a high-throughput method for sequence-specific enrichment and characterization of whole-virus genomes at up to 20% divergence from a reference sequence and 1,000-fold greater sensitivity than direct sequencing. The extreme genetic diversity of HCV led us to implement an algorithm for the efficient design of panels of oligonucleotide probes to capture any sequence among a defined set of targets without detectable bias. ve-SEQ enables efficient detection and sequencing of any HCV genome, including mixtures and intra-host variants, in a single experiment, with greater tolerance of sequence diversity than standard amplification methods and greater sensitivity than metagenomic sequencing, features that are directly applicable to other pathogens or arbitrary groups of target organisms, allowing the combination of sensitive detection with sequencing in many settings

    Resistance analysis of genotype 3 hepatitis C virus indicates subtypes inherently resistant to nonstructural protein 5A inhibitors

    No full text
    Hepatitis C virus (HCV) genotype (gt) 3 is highly prevalent globally, with non‐gt3a subtypes common in Southeast Asia. Resistance‐associated substitutions (RASs) have been shown to play a role in treatment failure. However, the role of RASs in gt3 is not well understood. We report the prevalence of RASs in a cohort of direct‐acting antiviral treatment‐naive, gt3‐infected patients, including those with rarer subtypes, and evaluate the effect of these RASs on direct‐acting antivirals in vitro. Baseline samples from 496 gt3 patients enrolled in the BOSON clinical trial were analyzed by next‐generation sequencing after probe‐based enrichment for HCV. Whole viral genomes were analyzed for the presence of RASs to approved direct‐acting antivirals. The resistance phenotype of RASs in combination with daclatasvir, velpatasvir, pibrentasvir, elbasvir, and sofosbuvir was measured using the S52 ΔN gt3a replicon model. The nonstructural protein 5A A30K and Y93H substitutions were the most common at 8.9% (n = 44) and 12.3% (n = 61), respectively, and showed a 10‐fold and 11‐fold increase in 50% effect concentration for daclatasvir compared to the unmodified replicon. Paired RASs (A30K + L31M and A30K + Y93H) were identified in 18 patients (9 of each pair); these combinations were shown to be highly resistant to daclatasvir, velpatasvir, elbasvir, and pibrentasvir. The A30K + L31M combination was found in all gt3b and gt3g samples. Conclusion: Our study reveals high frequencies of RASs to nonstructural protein 5A inhibitors in gt3 HCV; the paired A30K + L31M substitutions occur in all patients with gt3b and gt3g virus, and in vitro analysis suggests that these subtypes may be inherently resistant to all approved nonstructural protein 5A inhibitors for gt3 HCV
    corecore