320 research outputs found

    First lattice evidence for a non-trivial renormalization of the Higgs condensate

    Get PDF
    General arguments related to ``triviality'' predict that, in the broken phase of (λΦ4)4(\lambda\Phi^4)_4 theory, the condensate re-scales by a factor $Z_{\phi}$ different from the conventional wavefunction-renormalization factor, $Z_{prop}$. Using a lattice simulation in the Ising limit we measure $Z_{\phi}=m^2 \chi$ from the physical mass and susceptibility and $Z_{prop}$ from the residue of the shifted-field propagator. We find that the two $Z$'s differ, with the difference increasing rapidly as the continuum limit is approached. Since $Z_{\phi}$ affects the relation of to the Fermi constant it can sizeably affect the present bounds on the Higgs mass.Comment: 10 pages, 3 figures, 1 table, Latex2

    Physical mechanisms generating spontaneous symmetry breaking and a hierarchy of scales

    Get PDF
    We discuss the phase transition in 3+1 dimensional lambda Phi^4 theory from a very physical perspective. The particles of the symmetric phase (`phions') interact via a hard-core repulsion and an induced, long-range -1/r^3 attraction. If the phion mass is sufficiently small, the lowest-energy state is not the `empty' state with no phions, but is a state with a non-zero density of phions Bose-Einstein condensed in the zero-momentum mode. The condensate corresponds to the spontaneous-symmetry-breaking vacuum with neq 0 and its excitations ("phonons" in atomic-physics language) correspond to Higgs particles. The phase transition happens when the phion's physical mass m is still positive; it does not wait until m^2 passes through zero and becomes negative. However, at and near the phase transition, m is much, much less than the Higgs mass M_h. This interesting physics coexists with `triviality;' all scattering amplitudes vanish in the continuum limit, but the vacuum condensate becomes infinitely dense. The ratio m/M_h, which goes to zero in the continuum limit, can be viewed as a measure of non-locality in the regularized theory. An intricate hierarchy of length scales naturally arises. We speculate about the possible implications of these ideas for gravity and inflation.Comment: 27 pages plus 2 files of figure

    Zero mode in the time-dependent symmetry breaking of λϕ4\lambda\phi^4 theory

    Full text link
    We apply the quartic exponential variational approximation to the symmetry breaking phenomena of scalar field in three and four dimensions. We calculate effective potential and effective action for the time-dependent system by separating the zero mode from other non-zero modes of the scalar field and treating the zero mode quantum mechanically. It is shown that the quantum mechanical properties of the zero mode play a non-trivial role in the symmetry breaking of the scalar λϕ4\lambda \phi^4 theory.Comment: 10 pages, 3 figure

    Autonomous Renormalization of Phi^4 in Finite Geometry

    Full text link
    The autonomous renormalization of the O(N)-symmetric scalar theory is based on an infinite re-scaling of constant fields, whereas finite-momentum modes remain finite. The natural framework for a detailed analysis of this method is a system of finite size, where all non-constant modes can be integrated out perturbatively and the constant mode is treated by a saddle-point approximation in the thermodynamic limit. The calculation provides a better understanding of the properties of of the effective action and corroborates earlier findings concerning a heavy Higgs particle at about 2 TeV.Comment: 8 pages, Late

    Fractal Spin Glass Properties of Low Energy Configurations in the Frenkel-Kontorova chain

    Full text link
    We study numerically and analytically the classical one-dimensional Frenkel-Kontorova chain in the regime of pinned phase characterized by phonon gap. Our results show the existence of exponentially many static equilibrium configurations which are exponentially close to the energy of the ground state. The energies of these configurations form a fractal quasi-degenerate band structure which is described on the basis of elementary excitations. Contrary to the ground state, the configurations inside these bands are disordered.Comment: revtex, 9 pages, 9 figure

    A One-Layer Satellite Surface Energy Balance for Estimating Evapotranspiration Rates and Crop Water Stress Indexes

    Get PDF
    Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern Sicily, Italy) were evaluated using remotely sensed data from Landsat Thematic Mapper TM5 images. A one-source parameterization of the surface sensible heat flux exchange using satellite surface temperature has been used. The transfer of sensible and latent heat is described by aerodynamic resistance and surface resistance. Required model inputs are brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, roughness lengths, net radiation, air temperature, air humidity and wind speed. The aerodynamic resistance (rah) is formulated on the basis of the Monin-Obukhov surface layer similarity theory and the surface resistance (rs) is evaluated from the energy balance equation. The instantaneous surface flux values were converted into evaporative fraction (EF) over the heterogeneous land surface to derive daily evapotranspiration values. Remote sensing-based assessments of crop water stress (CWSI) were also made in order to identify local irrigation requirements. Evapotranspiration data and crop coefficient values obtained from the approach were compared with: (i) data from the semi-empirical approach “Kc reflectance-based”, which integrates satellite data in the visible and NIR regions of the electromagnetic spectrum with ground-based measurements and (ii) surface energy flux measurements collected from a micrometeorological tower located in the experiment area. The expected variability associated with ET flux measurements suggests that the approach-derived surface fluxes were in acceptable agreement with the observations

    The prognostic value of the myeloid-mediated immunosuppression marker Arginase-1 in classic Hodgkin Lymphoma

    Get PDF
    Neutrophilia is hallmark of classic Hodgkin Lymphoma (cHL), but its precise characterization remains elusive. We aimed at investigating the immunosuppressive role of high-density neutrophils in HL

    Incorporation of QCD Effects in Basic Corrections of the Electroweak Theory

    Full text link
    We study the incorporation of QCD effects in the basic electroweak corrections \drcar, \drcarw, and \dr. They include perturbative \Ord{\alpha\alpha_s} contributions and ttˉt\bar{t} threshold effects. The latter are studied in the resonance and Green-function approaches, in the framework of dispersion relations that automatically satisfy relevant Ward identities. Refinements in the treatment of the electroweak corrections, in both the \ms\ and the on-shell schemes of renormalization, are introduced, including the decoupling of the top quark in certain amplitudes, its effect on \hat{e}^2(\mz) and \sincarmz, the incorporation of recent results on the leading irreducible \Ord{\alpha^2} corrections, and simple expressions for the residual, i.e.\ ``non-electromagnetic'', parts of \drcar, \drcarw, and \dr. The results are used to obtain accurate values for \mw\ and \sincarmz, as functions of \mt\ and \mh. The higher-order effects induce shifts in these parameters comparable to the expected experimental accuracy, and they increase the prediction for \mt\ derived from current measurements. The \ms\ and the on-shell calculations of \dr, in a recently proposed formulation, are compared and found to be in excellent agreement over the wide ranges 60\GeV \leq \mh \leq 1 \TeV, \mz \leq \mt \leq 250 \GeV.Comment: 51 pages (needs doublespace, equations, and cite styles

    Perturbation Theory with a Variational Basis: the Generalized Gaussian Effective Potential

    Get PDF
    The perturbation theory with a variational basis is constructed and analyzed.The generalized Gaussian effective potential is introduced and evaluated up to the second order for selfinteracting scalar fields in one and two spatial dimensions. The problem of the renormalization of the mass is discussed in details. Thermal corrections are incorporated. The comparison between the finite temperature generalized Gaussian effective potential and the finite temperature effective potential is critically analyzed. The phenomenon of the restoration at high temperature of the symmetry broken at zero temperature is discussed.Comment: RevTex, 49 pages, 16 eps figure
    • …
    corecore