135 research outputs found

    Remark on a Browder's fixed point theorem

    Get PDF
    Abstract

    Bibliography

    Get PDF
    Abstract

    In vitro and in vivo evaluation of 99mTc-polymyxin B for specific targeting of gram-bacteria

    Get PDF
    Background: Infectious diseases are one of the main causes of morbidity and mortality worldwide. Nuclear molecular imaging would be of great help to non-invasively discriminate between septic and sterile inflammation through available radiopharmaceuticals, as none is currently available for clinical practice. Here, we describe the radiolabeling procedure and in vitro and in vivo studies of99mTc-polymyxin B sulfate (PMB) as a new single photon emission imaging agent for the characterization of infections due to Gram-negative bacteria. Results: Labeling efficiency was 97 ± 2% with an average molar activity of 29.5 ± 0.6 MBq/nmol. The product was highly stable in saline and serum up to 6 h. In vitro binding assay showed significant displaceable binding to Gram-negative bacteria but not to Gram-positive controls. In mice,99mTc-HYNIC-PMB was mainly taken up by liver and kidneys. Targeting studies confirmed the specificity of99mTc-HYNIC-PMB obtained in vitro, showing significantly higher T/B ratios for Gram-negative bacteria than Gram-positive controls. Conclusions: In vitro and in vivo results suggest that99mTc-HYNIC-PMB has a potential for in vivo identification of Gram-negative bacteria in patients with infections of unknown etiology. However, further investigations are needed to deeply understand the mechanism of action and behavior of99mTc-HYNIC-PMB in other animal models and in humans

    A novel mutation in calcium-sensing receptor gene associated to hypercalcemia and hypercalciuria.

    Get PDF
    Background: Familial Hyperparathyroidism (HPT) and Familial benign Hypocalciuric Hypercalcemia (FHH) are the most common causes of hereditary hypercalcemia. FHH has been demonstrated to be caused by inactivating mutations of calcium-sensing receptor (CaSR) gene, involved in PTH regulation as well as in renal calcium excretion.Case presentation: In two individuals, father and son, we found a novel heterozygous mutation in CaSR gene. The hypercalcemia was present only in father, which, by contrast to the classic form of FHH showed hypercalciuria (from 300 to 600 mg/24 h in different evaluations) and a Calcium/Creatinine ratio of 0.031, instead of low or normal calciuria (<0.01 typical finding in FHH). His son showed the same mutation in CaSR gene, but no clinical signs or hypercalcemia although serum ionized calcium levels were close to the upper limit of normal values (1.30 mmol/L: normal range: 1.12-1.31 mmol/L). Sequence analysis revealed a point mutation at codon 972 of CaSR gene (chromosome 3q), located within cytoplasmic domain of the CaSR, that changes Threonine with Methionine. The father was treated with Cinacalcet 90 mg/day, with a decrease of total serum calcemia from an average value of 12.2 mg/dl to 10.9 mg/dl.Conclusion: This is a case of a novel inactivating point mutation of CaSR gene that determines an atypical clinical presentation of FHH, characterized by hypercalcemia, hypercalciuria and inadequate normal PTH levels. Functional assay demonstrated that the 972 M variant influenced the maturation of the protein, in terms of the post-translational glycosylation. The impairment of the receptor activity is in keeping with the specific localization of the 972 residue in the C-terminal tail, assigned to the intracellular signalling, that on the basis of the our findings appears to be differently modulated in parathyroid gland and in kidne

    Titanium Surface Properties Influence the Biological Activity and FasL Expression of Craniofacial Stromal Cells.

    Get PDF
    Mesenchymal stromal cells (MSCs) can be easily isolated form craniofacial bones during routine dentistry procedures. Due to their embryological origin from neural crest, they represent a suitable cell population to study cell-biomaterial interaction in the craniofacial field, including osteoinductive/osteointegrative processes. The biological and immunomodulatory properties of MSCs may be influenced by chemistry and topography of implant surfaces. We investigated if and how three different titanium surfaces, machined (MCH), sandblasted with resorbable blasting medium (RBM), and Ca++-nanostructured (NCA), may affect biological activity, osseointegration, and immunomodulatory properties of craniofacial MSCs. Cell proliferation, morphology, osteogenic markers, and FasL were evaluated on MSCs isolated from the mandibular bone after seeding on these three different surfaces. No statistically significant differences in cell proliferation were observed whereas different morphologies and growth patterns were detected for each type of surface. No difference in the expression of osteogenic markers was revealed. Interestingly, FasL expression, involved in the immunomodulatory activity of stem cells, was influenced by surface properties. Particularly, immunofluorescence analysis indicated that FasL expression increased on MCH surface compared to the others confirming the suggested role of FasL in promoting osteogenic differentiation. Titanium surface treatments and topography might reflect different biological behaviours of craniofacial MSCs and influence their osseointegration/immunomodulation properties

    Studies on the antimicrobial activity and brine shrimp toxicity of Zeyheria tuberculosa (Vell.) Bur. (Bignoniaceae) extracts and their main constituents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to the indiscriminate use of antimicrobial drugs, the emergence of human pathogenic microorganisms resistant to major classes of antibiotics has been increased and has caused many clinical problems in the treatment of infectious diseases. Thus, the aim of this study was to evaluate for the first time the <it>in vitro </it>antimicrobial activity and brine shrimp lethality of extracts and isolated compounds from <it>Zeyheria tuberculosa </it>(Vell.) Bur., a species used in Brazilian folk medicine for treatment of cancer and skin diseases.</p> <p>Methods</p> <p>Using the disc diffusion method, bioautography assay and brine shrimp toxicity test (<it>Artemia salina </it>Leach), we studied the antimicrobial activity and lethality of extracts and isolated compounds against three microorganisms strains, including Gram-positive (<it>Staphylococcus aureus</it>) and Gram-negative (<it>Pseudomonas aeruginosa</it>) bacteria and yeasts (<it>Candida albicans</it>).</p> <p>Results</p> <p>In this study, the extracts inhibited <it>S. aureus </it>(8.0 ± 0.0 to 14.0 ± 0.0 mm) and <it>C. albicans </it>(15.3 ± 0.68 to 25.6 ± 0.4 mm) growth. In the brine shrimp test, only two of them showed toxic effects (LC<sub>50 </sub>29.55 to 398.05 μg/mL) and some extracts were non-toxic or showed weak lethality (LC<sub>50 </sub>705.02 to > 1000 μg/mL). From these extracts, four flavones [5,6,7,8-tetramethoxyflavone (1), 5,6,7-trimethoxyflavone (2), 4'-hydroxy-5,6,7,8-tetramethoxyflavone (3), and 4'-hydroxy-5,6,7-trimethoxyflavone (4)] were isolated through bioassay-guided fractionation and identified based on the 1D and 2D NMR spectral data. By bioautography assays, compounds 1 [<it>S. aureus </it>(16.0 ± 0.0 mm) and <it>C. albicans </it>(20.0 ± 0.0 mm)] and 3 [<it>S. aureus </it>(10.3 ± 0.6 mm) and <it>C. albicans </it>(19.7 ± 0.6 mm)] inhibited both microorganisms while 2 inhibited only <it>S. aureus </it>(11.7 ± 0.6 mm). Compound 4 did not restrain the growth of any tested microorganism.</p> <p>Conclusion</p> <p>Our results showed that extracts and isolated flavones from <it>Z. tuberculosa </it>may be particularly useful against two pathogenic microorganisms, <it>S. aureus </it>and <it>C. albicans</it>. These results may justify the popular use this species since some fractions tested had antimicrobial activity and others showed significant toxic effects on brine shrimps. However, in order to evaluate possible clinical application in therapy of infectious diseases, further studies about the safety and toxicity of isolated compounds are needed.</p

    IRF4 expression is low in Philadelphia negative myeloproliferative neoplasms and is associated with a worse prognosis

    Get PDF
    Interferon regulatory factor 4 (IRF4) is involved in the pathogenesis of various hematologic malignancies. Its expression has been related to the negative regulation of myeloid-derived suppressor cells (MDSCs) and the polarization of anti-inflammatory M2 macrophages, thereby altering immunosurveillance and inflammatory mechanisms. An abnormal inflammatory status in the bone marrow microenvironment of myeloproliferative neoplasms (MPNs) has recently been demonstrated; moreover, in chronic myeloid leukemia a downregulated expression of IRF4 has been found. In this context, we evaluated the IRF4 expression in 119 newly diagnosed consecutive Philadelphia negative MPNs (Ph- MPNs), showing a low expression among the MPNs phenotypes with a more significant decrease in primary myelofibrosis patients. Lower IRF4 levels were associated with JAK2 + and triple negatives cases carrying the worst prognosis. Furthermore, the IRF4 levels were related to leukemic transformation and a shorter leukemia-free survival; moreover, the risk of myelofibrosis transformation in polycythemia vera and essential thrombocythemia patients was more frequent in cases with lower IRF4 levels. Overall, our study demonstrates an IRF4 dysregulated expression in MPNs patients and its association with a worse prognosis. Further studies could validate these data, to improve our knowledge of the MPNs pathogenesis and confirm the IRF4 role as a new prognostic factor

    Case report: Novel FHR2 variants in atypical Hemolytic Uremic Syndrome: A case study of a translational medicine approach in renal transplantation

    Get PDF
    Atypical hemolytic–uremic syndrome (aHUS) is a severe thrombotic microangiopathy in which kidney involvement is common. aHUS can be due to either genetic or acquired abnormalities, with most abnormalities affecting the alternative complement pathway. Several genetic factors/alterations can drive the clinical presentation, therapeutic response, and risk of recurrence, especially recurrence following kidney transplantation. We report here the case of a 22-year-old man who developed a severe form of aHUS. Renal biopsy revealed thrombotic microangiopathy and features of chronic renal damage. Despite two eculizumab infusions, the patient remained dialysis dependent. Two novel rare variants, c.109G>A (p.E37K) and c.159 C>A (p.Y53*), were identified in the factor H-related 2 ( FHR2 ) gene, and western blot analysis revealed a significant reduction in the level of FHR2 protein in the patient’s serum. Although FHR2 involvement in complement 3 glomerulopathy has been reported previously, a role for FRH2 as a complement modulator has not yet been definitively shown. In addition, no cases of aHUS in individuals with FHR2 variants have been reported. Given the role of FHRs in the complement system and the fact that this patient was a candidate for a kidney transplant, we studied the relevance of low FHR2 plasma levels through a set of functional in vitro assays. The aim of our work was to determine if low FHR2 plasma levels could influence complement control at the endothelial surface with a view to identifying a therapeutic approach tailored to this specific patient. Interestingly, we observed that low FHR2 levels in the patient’s serum could induce complement activation, as well as C5b–9 deposition on human endothelial cells, and affected cell morphology. As C5b–9 deposition is a prerequisite for endothelial cell damage, these results suggest that extremely low FHR2 plasma levels increase the risk of aHUS. Given their ability to reduce C5b–9 deposition, recombinant FHR2 and eculizumab were tested in vitro and found to inhibit hemolysis and endothelial cell surface damage. Both molecules showed effective and comparable profiles. Based on these results, the patient underwent a kidney transplant, and received eculizumab as induction and maintenance therapy. Five years after transplantation, the patient remains in good general health, with stable graft function and no evidence of disease recurrence. To our knowledge, this is first reported case of an aHUS patient carrying FHR2 mutations and provides an example of a translational therapeutic approach in kidney transplantation
    corecore