111 research outputs found

    Spin foams with timelike surfaces

    Full text link
    Spin foams of 4d gravity were recently extended from complexes with purely spacelike surfaces to complexes that also contain timelike surfaces. In this article, we express the associated partition function in terms of vertex amplitudes and integrals over coherent states. The coherent states are characterized by unit 3--vectors which represent normals to surfaces and lie either in the 2--sphere or the 2d hyperboloids. In the case of timelike surfaces, a new type of coherent state is used and the associated completeness relation is derived. It is also shown that the quantum simplicity constraints can be deduced by three different methods: by weak imposition of the constraints, by restriction of coherent state bases and by the master constraint.Comment: 22 pages, no figures; v2: remarks on operator formalism added in discussion; correction: the spin 1/2 irrep of the discrete series does not appear in the Plancherel decompositio

    A spin foam model for general Lorentzian 4-geometries

    Full text link
    We derive simplicity constraints for the quantization of general Lorentzian 4-geometries. Our method is based on the correspondence between coherent states and classical bivectors and the minimization of associated uncertainties. For spacelike geometries, this scheme agrees with the master constraint method of the model by Engle, Pereira, Rovelli and Livine (EPRL). When it is applied to general Lorentzian geometries, we obtain new constraints that include the EPRL constraints as a special case. They imply a discrete area spectrum for both spacelike and timelike surfaces. We use these constraints to define a spin foam model for general Lorentzian 4-geometries.Comment: 27 pages, 1 figure; v4: published versio

    Minkowski vacuum in background independent quantum gravity

    Get PDF
    We consider a local formalism in quantum field theory, in which no reference is made to infinitely extended spacial surfaces, infinite past or infinite future. This can be obtained in terms of a functional W[f,S] of the field f on a closed 3d surface S that bounds a finite region R of Minkowski spacetime. The dependence of W on S is governed by a local covariant generalization of the Schroedinger equation. Particles' scattering amplitudes that describe experiments conducted in the finite region R --the lab during a finite time-- can be expressed in terms of W. The dependence of W on the geometry of S expresses the dependence of the transition amplitudes on the relative location of the particle detectors. In a gravitational theory, background independence implies that W is independent from S. However, the detectors' relative location is still coded in the argument of W, because the geometry of the boundary surface is determined by the boundary value f of the gravitational field. This observation clarifies the physical meaning of the functional W defined by non perturbative formulations of quantum gravity, such as the spinfoam formalism. In particular, it suggests a way to derive particles' scattering amplitudes from a spinfoam model. In particular, we discuss the notion of vacuum in a generally covariant context. We distinguish the nonperturbative vacuum |0_S>, which codes the dynamics, from the Minkowski vacuum |0_M>, which is the state with no particles and is recovered by taking appropriate large values of the boundary metric. We derive a relation between the two vacuum states. We propose an explicit expression for computing the Minkowski vacuum from a spinfoam model

    Second-order amplitudes in loop quantum gravity

    Full text link
    We explore some second-order amplitudes in loop quantum gravity. In particular, we compute some second-order contributions to diagonal components of the graviton propagator in the large distance limit, using the old version of the Barrett-Crane vertex amplitude. We illustrate the geometry associated to these terms. We find some peculiar phenomena in the large distance behavior of these amplitudes, related with the geometry of the generalized triangulations dual to the Feynman graphs of the corresponding group field theory. In particular, we point out a possible further difficulty with the old Barrett-Crane vertex: it appears to lead to flatness instead of Ricci-flatness, at least in some situations. The observation raises the question whether this difficulty remains with the new version of the vertex.Comment: 22 pages, 18 figure

    Euclidean three-point function in loop and perturbative gravity

    Full text link
    We compute the leading order of the three-point function in loop quantum gravity, using the vertex expansion of the Euclidean version of the new spin foam dynamics, in the region of gamma<1. We find results consistent with Regge calculus in the limit gamma->0 and j->infinity. We also compute the tree-level three-point function of perturbative quantum general relativity in position space, and discuss the possibility of directly comparing the two results.Comment: 16 page

    Disordered locality in loop quantum gravity states

    Get PDF
    We show that loop quantum gravity suffers from a potential problem with non-locality, coming from a mismatch between micro-locality, as defined by the combinatorial structures of their microscopic states, and macro-locality, defined by the metric which emerges from the low energy limit. As a result, the low energy limit may suffer from a disordered locality characterized by identifications of far away points. We argue that if such defects in locality are rare enough they will be difficult to detect.Comment: 11 pages, 4 figures, revision with extended discussion of result

    Colored Group Field Theory

    Full text link
    Group field theories are higher dimensional generalizations of matrix models. Their Feynman graphs are fat and in addition to vertices, edges and faces, they also contain higher dimensional cells, called bubbles. In this paper, we propose a new, fermionic Group Field Theory, posessing a color symmetry, and take the first steps in a systematic study of the topological properties of its graphs. Unlike its bosonic counterpart, the bubbles of the Feynman graphs of this theory are well defined and readily identified. We prove that this graphs are combinatorial cellular complexes. We define and study the cellular homology of this graphs. Furthermore we define a homotopy transformation appropriate to this graphs. Finally, the amplitude of the Feynman graphs is shown to be related to the fundamental group of the cellular complex

    Cosmological Plebanski theory

    Full text link
    We consider the cosmological symmetry reduction of the Plebanski action as a toy-model to explore, in this simple framework, some issues related to loop quantum gravity and spin-foam models. We make the classical analysis of the model and perform both path integral and canonical quantizations. As for the full theory, the reduced model admits two types of classical solutions: topological and gravitational ones. The quantization mixes these two solutions, which prevents the model to be equivalent to standard quantum cosmology. Furthermore, the topological solution dominates at the classical limit. We also study the effect of an Immirzi parameter in the model.Comment: 20 page

    On the perturbative expansion of a quantum field theory around a topological sector

    Full text link
    The idea of treating general relativistic theories in a perturbative expansion around a topological theory has been recently put forward in the quantum gravity literature. Here we investigate the viability of this idea, by applying it to conventional Yang--Mills theory on flat spacetime. We find that the expansion around the topological theory coincides with the usual expansion around the abelian theory, though the equivalence is non-trivial. In this context, the technique appears therefore to be viable, but not to bring particularly new insights. Some implications for gravity are discussed.Comment: 7 page
    corecore