41 research outputs found

    Cavity approach for modeling and fitting polymer stretching

    Full text link
    The mechanical properties of molecules are today captured by single molecule manipulation experiments, so that polymer features are tested at a nanometric scale. Yet devising mathematical models to get further insight beyond the commonly studied force--elongation relation is typically hard. Here we draw from techniques developed in the context of disordered systems to solve models for single and double--stranded DNA stretching in the limit of a long polymeric chain. Since we directly derive the marginals for the molecule local orientation, our approach allows us to readily calculate the experimental elongation as well as other observables at wish. As an example, we evaluate the correlation length as a function of the stretching force. Furthermore, we are able to fit successfully our solution to real experimental data. Although the model is admittedly phenomenological, our findings are very sound. For single--stranded DNA our solution yields the correct (monomer) scale and, yet more importantly, the right persistence length of the molecule. In the double--stranded case, our model reproduces the well-known overstretching transition and correctly captures the ratio between native DNA and overstretched DNA. Also in this case the model yields a persistence length in good agreement with consensus, and it gives interesting insights into the bending stiffness of the native and overstretched molecule, respectively.Comment: 12 pages; 3 figures; 1 tabl

    The configuration multi-edge model: Assessing the effect of fixing node strengths on weighted network magnitudes

    Full text link
    Complex networks grow subject to structural constraints which affect their measurable properties. Assessing the effect that such constraints impose on their observables is thus a crucial aspect to be taken into account in their analysis. To this end,we examine the effect of fixing the strength sequence in multi-edge networks on several network observables such as degrees, disparity, average neighbor properties and weight distribution using an ensemble approach. We provide a general method to calculate any desired weighted network metric and we show that several features detected in real data could be explained solely by structural constraints. We thus justify the need of analytical null models to be used as basis to assess the relevance of features found in real data represented in weighted network form.Comment: 11 pages. 4 figure

    Synchronization reveals topological scales in complex networks

    Get PDF
    We study the relationship between topological scales and dynamic time scales in complex networks. The analysis is based on the full dynamics towards synchronization of a system of coupled oscillators. In the synchronization process, modular structures corresponding to well defined communities of nodes emerge in different time scales, ordered in a hierarchical way. The analysis also provides a useful connection between synchronization dynamics, complex networks topology and spectral graph analysis.Comment: 4 pages, 3 figure

    Spectral density of random graphs with topological constraints

    Full text link
    The spectral density of random graphs with topological constraints is analysed using the replica method. We consider graph ensembles featuring generalised degree-degree correlations, as well as those with a community structure. In each case an exact solution is found for the spectral density in the form of consistency equations depending on the statistical properties of the graph ensemble in question. We highlight the effect of these topological constraints on the resulting spectral density.Comment: 24 pages, 6 figure

    Synchronization processes in complex networks

    Full text link
    We present an extended analysis, based on the dynamics towards synchronization of a system of coupled oscillators, of the hierarchy of communities in complex networks. In the synchronization process, different structures corresponding to well defined communities of nodes appear in a hierarchical way. The analysis also provides a useful connection between synchronization dynamics, complex networks topology and spectral graph analysis.Comment: 16 pages, 4 figures. To appear in Physica D "Special Issue on dynamics on complex networks

    The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission

    Get PDF
    86 pags., 49 figs., 24 tabs.NASA’s Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.This work has been funded by the Spanish Ministry of Economy and Competitiveness, through the projects No. ESP2014-54256-C4-1-R (also -2-R, -3-R and -4-R) and AYA2015-65041-P; Ministry of Science, Innovation and Universities, projects No. ESP2016-79612-C3-1-R (also -2-R and -3-R), ESP2016-80320-C2-1-R, RTI2018-098728-B-C31 (also -C32 and -C33) and RTI2018-099825-B-C31; Instituto Nacional de Técnica Aeroespacial; Ministry of Science and Innovation’s Centre for the Development of Industrial Technology; Grupos Gobierno Vasco IT1366-19; and European Research Council Consolidator Grant no 818602. The US co-authors performed their work under sponsorship from NASA’s Mars 2020 project, from the Game Changing Development program within the Space Technology Mission Directorate and from the Human Exploration and Operations Directorate

    The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission

    Get PDF
    86 pags, 49 figs, 24 tabsNASA's Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.This work has been funded by the Spanish Ministry of Economy and Competitiveness, through the projects No. ESP2014-54256-C4-1-R (also -2-R, -3-R and -4-R) and AYA2015-65041-P; Ministry of Science, Innovation and Universities, projects No. ESP2016-79612-C3-1-R (also -2-R and -3-R), ESP2016-80320-C2-1-R, RTI2018-098728-B-C31 (also -C32 and -C33) and RTI2018-099825-B-C31; Instituto Nacional de Tecnica Aeroespacial; Ministry of Science and Innovation's Centre for the Development of Industrial Technology; Grupos Gobierno Vasco IT1366-19; and European Research Council Consolidator Grant no 818602.Peer reviewe
    corecore