189 research outputs found

    Quantitation of selective autophagic protein aggregate degradation in vitro and in vivo using luciferase reporters

    Get PDF
    The analysis of autophagy in cells and tissue has principally been performed via qualitative measures. These assays identify autophagosomes or measure the conversion of LC3I to LC3II. However, qualitative assays fail to quantitate the degradation of an autophagic substrate and therefore only indirectly measure an intact autophagic system. “Autophagic flux” can be measured using long-lived proteins that are degraded via autophagy. We developed a quantifiable luciferase reporter assay that measures the degradation of a long-lived polyglutamine protein aggregate, polyQ80-luciferase. Using this reporter, the induction of autophagy via starvation or rapamycin in cells preferentially decreases polyQ80-luciferase when compared with a non-aggregating polyQ19-luciferase after four hours of treatment. This response was both time- and concentration-dependent, prevented by autophagy inhibitors and absent in ATG5 knockout cells. We adapted this assay to living animals by electroporating polyQ19-luciferase and polyQ80-luciferase expression constructs into the right and left tibialis anterior (TA) muscles of mice, respectively. The change in the ratio of polyQ80-luciferase to polyQ19-luciferase signal before and after autophagic stimulation or inhibition was quantified via in vivo bioluminescent imaging. Following two days of starvation or treatment with intraperitoneal rapamycin, there was a ~35% reduction in the ratio of polyQ80:polyQ19-luciferase activity, consistent with the selective autophagic degradation of polyQ80 protein. This autophagic response in skeletal muscle in vivo was abrogated by co-treatment with chloroquine and in ATG16L1 hypomorphic mice. Our study demonstrates a method to quantify the autophagic flux of an expanded polyglutamine via luciferase reporters in vitro and in vivo

    PPARα contributes to protection against metabolic and inflammatory derangements associated with acute kidney injury in experimental sepsis

    Get PDF
    Abstract Sepsis‐associated acute kidney injury (AKI) is a significant problem in critically ill children and adults resulting in increased morbidity and mortality. Fundamental mechanisms contributing to sepsis‐associated AKI are poorly understood. Previous research has demonstrated that peroxisome proliferator‐activated receptor α (PPARα) expression is associated with reduced organ system failure in sepsis. Using an experimental model of polymicrobial sepsis, we demonstrate that mice deficient in PPARα have worse kidney function, which is likely related to reduced fatty acid oxidation and increased inflammation. Ultrastructural evaluation with electron microscopy reveals that the proximal convoluted tubule is specifically injured in septic PPARα deficient mice. In this experimental group, serum metabolomic analysis reveals unanticipated metabolic derangements in tryptophan‐kynurenine‐NAD+ and pantothenate pathways. We also show that a subgroup of children with sepsis whose genome‐wide expression profiles are characterized by repression of the PPARα signaling pathway has increased incidence of severe AKI. These findings point toward interesting associations between sepsis‐associated AKI and PPARα‐driven fatty acid metabolism that merit further investigation

    Whole blood angiopoietin-1 and -2 levels discriminate cerebral and severe (non-cerebral) malaria from uncomplicated malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Severe and cerebral malaria are associated with endothelial activation. Angiopoietin-1 (ANG-1) and angiopoietin-2 (ANG-2) are major regulators of endothelial activation and integrity. The aim of this study was to investigate the clinical utility of whole blood angiopoietin (ANG) levels as biomarkers of disease severity in <it>Plasmodium falciparum </it>malaria.</p> <p>Methods</p> <p>The utility of whole blood ANG levels was examined in Thai patients to distinguish cerebral (CM; n = 87) and severe (non-cerebral) malaria (SM; n = 36) from uncomplicated malaria (UM; n = 70). Comparative statistics are reported using a non-parametric univariate analysis (Kruskal-Wallis test or Chi-squared test, as appropriate). Multivariate binary logistic regression was used to examine differences in whole blood protein levels between groups (UM, SM, CM), adjusting for differences due to ethnicity, age, parasitaemia and sex. Receiver operating characteristic curve analysis was used to assess the diagnostic accuracy of the ANGs in their ability to distinguish between UM, SM and CM. Cumulative organ injury scores were obtained for patients with severe disease based on the presence of acute renal failure, jaundice, severe anaemia, circulatory collapse or coma.</p> <p>Results</p> <p>ANG-1 and ANG-2 were readily detectable in whole blood. Compared to UM there were significant decreases in ANG-1 (p < 0.001) and significant increases in ANG-2 (p < 0.001) levels and the ratio of ANG-2: ANG-1 (p < 0.001) observed in patients with SM and CM. This effect was independent of covariates (ethnicity, age, parasitaemia, sex). Further, there was a significant decrease in ANG-1 levels in patients with SM (non-cerebral) versus CM (p < 0.001). In participants with severe disease, ANG-2, but not ANG-1, levels correlated with cumulative organ injury scores; however, ANG-1 correlated with the presence of renal dysfunction and coma. Receiver operating characteristic curve analysis demonstrated that the level of ANG-1, the level of ANG-2 or the ratio of ANG-2: ANG-1 discriminated between individuals with UM and SM (area under the curve, p-value: ANG-2, 0.763, p < 0.001; ANG-1, 0.884, p < 0.001; Ratio, 0.857, p < 0.001) or UM and CM (area under the curve, p-value: ANG-2, 0.772, p < 0.001; ANG-1, 0.778, p < 0.001; Ratio, 0.820, p < 0.001).</p> <p>Conclusions</p> <p>These results suggest that whole blood ANG-1/2 levels are promising clinically informative biomarkers of disease severity in malarial syndromes.</p

    Passive and active markers of cortical excitability in epilepsy

    Full text link
    Electroencephalography (EEG) has been the primary diagnostic tool in clinical epilepsy for nearly a century. Its review is performed using qualitative clinical methods that have changed little over time. However, the intersection of higher resolution digital EEG and analytical tools developed in the past decade invites a re-exploration of relevant methodology. In addition to the established spatial and temporal markers of spikes and high-frequency oscillations, novel markers involving advanced postprocessing and active probing of the interictal EEG are gaining ground. This review provides an overview of the EEG-based passive and active markers of cortical excitability in epilepsy and of the techniques developed to facilitate their identification. Several different emerging tools are discussed in the context of specific EEG applications and the barriers we must overcome to translate these tools into clinical practice

    Quantifying interictal intracranial EEG to predict focal epilepsy

    Full text link
    Intracranial EEG (IEEG) is used for 2 main purposes, to determine: (1) if epileptic networks are amenable to focal treatment and (2) where to intervene. Currently these questions are answered qualitatively and sometimes differently across centers. There is a need for objective, standardized methods to guide surgical decision making and to enable large scale data analysis across centers and prospective clinical trials. We analyzed interictal data from 101 patients with drug resistant epilepsy who underwent presurgical evaluation with IEEG. We chose interictal data because of its potential to reduce the morbidity and cost associated with ictal recording. 65 patients had unifocal seizure onset on IEEG, and 36 were non-focal or multi-focal. We quantified the spatial dispersion of implanted electrodes and interictal IEEG abnormalities for each patient. We compared these measures against the 5 Sense Score (5SS), a pre-implant estimate of the likelihood of focal seizure onset, and assessed their ability to predict the clinicians choice of therapeutic intervention and the patient outcome. The spatial dispersion of IEEG electrodes predicted network focality with precision similar to the 5SS (AUC = 0.67), indicating that electrode placement accurately reflected pre-implant information. A cross-validated model combining the 5SS and the spatial dispersion of interictal IEEG abnormalities significantly improved this prediction (AUC = 0.79; p<0.05). The combined model predicted ultimate treatment strategy (surgery vs. device) with an AUC of 0.81 and post-surgical outcome at 2 years with an AUC of 0.70. The 5SS, interictal IEEG, and electrode placement were not correlated and provided complementary information. Quantitative, interictal IEEG significantly improved upon pre-implant estimates of network focality and predicted treatment with precision approaching that of clinical experts.Comment: 25 pages, 4 Figures, 1 tabl

    Amber and the Cretaceous Resinous Interval

    Get PDF
    Amber is fossilized resin that preserves biological remains in exceptional detail, study of which has revolutionized understanding of past terrestrial organisms and habitats from the Early Cretaceous to the present day. Cretaceous amber outcrops are more abundant in the Northern Hemisphere and during an interval of about 54 million years, from the Barremian to the Campanian. The extensive resin production that generated this remarkable amber record may be attributed to the biology of coniferous resin producers, the growth of resiniferous forests in proximity to transitional sedimentary environments, and the dynamics of climate during the Cretaceous. Here we discuss the set of interrelated abiotic and biotic factors potentially involved in resin production during that time. We name this period of mass resin production by conifers during the late Mesozoic, fundamental as an archive of terrestrial life, the `Cretaceous Resinous Interval (CREI).This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades [research agreement CRE CGL2017-84419 AEI/FEDER, UE] and by the Consejería de Industria, Turismo, Innovación, Transporte y Comercio of the Gobierno de Cantabria through the public enterprise EL SOPLAO S.L. [research agreement #20963 with University of Barcelona and research contract Ref. VAPC 20225428 to CN-IGME CSIC, both 2022–2025]; the Conselho Nacional de Pesquisa (Brazil) [research grand PQ 304529/19–2]; National Geographic Global Exploration Fund Northern Europa [research agreement GEFNE 127-14]; Deutsche Forschungsgemeinschaft (DFG) [research agreement SO 894/6-1]; VolkswagenStiftung [research agreement 90946]; the Secretary of Universities and Research (Government of Catalonia) and by the Horizon 2020 program of research and innovation of the European Union under the Marie-Curie [research contract no. 801370, Beatriu de Pinós]; the Secretary of Universities and Research (Government of Catalonia) and the European Social Fund [research contract 2021FI_B2 00003]; this work is a contribution to the grant RYC2021-032907-I, funded by the MCIN/AEI/10.13039/501100011033 and by the European Union «NextGenerationEU»/PRTR; and the National Agency for Research and Development (ANID) Scholarship Program [BECAS CHILE 2020-Folio 72210321].Abstract Keywords 1. Introduction 2. Definition of the Cretaceous Resinous Interval 3. Conditional factors on resin production and preservation 3.1. Abiotic factors 3.1.1. Atmospheric gas composition, temperature, and wildfires 3.1.2. Volcanism and changes in sea level 3.1.3. Oceanic physicochemical properties and hurricanes 3.1.4. Climatic overview throughout the CREI 3.2. Biotic factors 4. Present limitations and future directions 5. Conclusions Funding Author contributions Declaration of Competing Interest Acknowledgements Appendix A. Supplementary data Data availability Reference

    Serum Angiopoietin-1 and -2 Levels Discriminate Cerebral Malaria from Uncomplicated Malaria and Predict Clinical Outcome in African Children

    Get PDF
    BACKGROUND: Limited tools exist to identify which individuals infected with Plasmodium falciparum are at risk of developing serious complications such as cerebral malaria (CM). The objective of this study was to assess serum biomarkers that differentiate between CM and non-CM, with the long-term goal of developing a clinically informative prognostic test for severe malaria. METHODOLOGY/PRINCIPAL FINDINGS: Based on the hypothesis that endothelial activation and blood-brain-barrier dysfunction contribute to CM pathogenesis, we examined the endothelial regulators, angiopoietin-1 (ANG-1) and angiopoietin-2 (ANG-2), in serum samples from P. falciparum-infected patients with uncomplicated malaria (UM) or CM, from two diverse populations--Thai adults and Ugandan children. Angiopoietin levels were compared to tumour necrosis factor (TNF). In both populations, ANG-1 levels were significantly decreased and ANG-2 levels were significantly increased in CM versus UM and healthy controls (p<0.001). TNF was significantly elevated in CM in the Thai adult population (p<0.001), but did not discriminate well between CM and UM in African children. Receiver operating characteristic curve analysis showed that ANG-1 and the ratio of ANG-2:ANG-1 accurately discriminated CM patients from UM in both populations. Applied as a diagnostic test, ANG-1 had a sensitivity and specificity of 100% for distinguishing CM from UM in Thai adults and 70% and 75%, respectively, for Ugandan children. Across both populations the likelihood ratio of CM given a positive test (ANG-1<15 ng/mL) was 4.1 (2.7-6.5) and the likelihood ratio of CM given a negative test was 0.29 (0.20-0.42). Moreover, low ANG-1 levels at presentation predicted subsequent mortality in children with CM (p = 0.027). CONCLUSIONS/SIGNIFICANCE: ANG-1 and the ANG-2/1 ratio are promising clinically informative biomarkers for CM. Additional studies should address their utility as prognostic biomarkers and potential therapeutic targets in severe malaria

    The James Webb Space Telescope Mission: Optical Telescope Element Design, Development, and Performance

    Full text link
    The James Webb Space Telescope (JWST) is a large, infrared space telescope that has recently started its science program which will enable breakthroughs in astrophysics and planetary science. Notably, JWST will provide the very first observations of the earliest luminous objects in the Universe and start a new era of exoplanet atmospheric characterization. This transformative science is enabled by a 6.6 m telescope that is passively cooled with a 5-layer sunshield. The primary mirror is comprised of 18 controllable, low areal density hexagonal segments, that were aligned and phased relative to each other in orbit using innovative image-based wavefront sensing and control algorithms. This revolutionary telescope took more than two decades to develop with a widely distributed team across engineering disciplines. We present an overview of the telescope requirements, architecture, development, superb on-orbit performance, and lessons learned. JWST successfully demonstrates a segmented aperture space telescope and establishes a path to building even larger space telescopes.Comment: accepted by PASP for JWST Overview Special Issue; 34 pages, 25 figure
    corecore