3,302 research outputs found

    Thrust and direction control apparatus Patent

    Get PDF
    Thrust and attitude control apparatus using jet nozzle in movable canard surface or fin configuratio

    The 2000 Periastron Passage of PSR B1259-63

    Get PDF
    We report here on a sequence of 28 observations of the binary pulsar system PSR B1259-63/SS2883 at four radio frequencies made with the Australia Telescope Compact Array around the time of the 2000 periastron passage. Observations made on 2000 Sep 1 show that the pulsar's apparent rotation measure (RM) reached a maximum of 14800±1800-14800 \pm 1800 rad m2^{-2}, some 700 times the value measured away from periastron, and is the largest astrophysical RM measured. This value, combined with the dispersion measure implies a magnetic field in the Be star's wind of 6 mG. We find that the light curve of the unpulsed emission is similar to that obtained during the 1997 periastron but that differences in detail imply that the emission disc of the Be star is thicker and/or of higher density. The behaviour of the light curve at late times is best modelled by the adiabatic expansion of a synchrotron bubble formed in the pulsar/disc interaction. The expansion rate of the bubble 12\sim 12 km s1^{-1} is surprisingly low but the derived magnetic field of 1.6 G close to that expected.Comment: 8 pages, 6 figures, 3 tables, LaTeX (mn.sty). Accepted for publication in the Monthly Notices of the Royal Astronomical Society. Also available at http://astronomy.swin.edu.au/staff/tconnors/publications.htm

    Assessing the Competing Characteristics of Privacy and Safety within Vehicular Ad Hoc Networks

    Get PDF
    The introduction of Vehicle-to-Vehicle (V2V) communication has the promise of decreasing vehicle collisions, congestion, and emissions. However, this technology places safety and privacy at odds; an increase of safety applications will likely result in the decrease of consumer privacy. The National Highway Traffic Safety Administration (NHTSA) has proposed the Security Credential Management System (SCMS) as the back end infrastructure for maintaining, distributing, and revoking vehicle certificates attached to every Basic Safety Message (BSM). This Public Key Infrastructure (PKI) scheme is designed around the philosophy of maintaining user privacy through the separation of functions to prevent any one subcomponent from identifying users. However, because of the high precision of the data elements within each message this design cannot prevent large scale third-party BSM collection and pseudonym linking resulting in privacy loss. In addition, this philosophy creates an extraordinarily complex and heavily distributed system. In response to this difficulty, this thesis proposes a data ambiguity method to bridge privacy and safety within the context of interconnected vehicles. The objective in doing so is to preserve both Vehicle-to-Vehicle (V2V) safety applications and consumer privacy. A Vehicular Ad-Hoc Network (VANET) metric classification is introduced that explores five fundamental pillars of VANETs. These pillars (Safety, Privacy, Cost, Efficiency, Stability) are applied to four different systems: Non-V2V environment, the aforementioned SCMS, the group-pseudonym based Vehicle Based Security System (VBSS), and VBSS with Dithering (VBSS-D) which includes the data ambiguity method of dithering. By using these evaluation criteria, the advantages and disadvantages of bringing each system to fruition is showcased

    Scientific objectives and first results from COMPTEL

    Get PDF
    The imaging Compton telescope (COMPTEL) is the first imaging telescope in space to explore the MeV gamma ray range. At present it is performing a complete sky survey. In later phases of the mission, selected celestial objects will be studied in more detail. Targets of special interest in the COMPTEL energy range are radio pulsars, X-ray binaries, novae, supernova remnants, molecular clouds, and the interstellar medium within the Milky Way, as well as the nuclei of active galaxies, supernovae, and the diffuse cosmic background radiation in extragalactic space. The first four months of operation demonstrated that COMPTEL basically performs as expected. The Crab is clearly seen at its proper position in the first images of the anticenter region of the Galaxy. The Crab pulsar lightcurve was measured with unprecedented accuracy. The quasar 3C273 was seen for the first time at MeV-energies. Several cosmic bursts within the COMPTEL field of view could be located to an accuracy of about 1 degree. On June 9, 11, and 15, 1991 COMPTEL observed gamma ray (continuum and line) emission from three solar flares. Neutrons were also detected from the June 9 flare. At the present state of analysis, COMPTEL achieves the prelaunch predictions of its sensitivity within a factor of 2. Based on the present performance of COMPTEL, the team is confident that COMPTEL will fulfill its primary mission of surveying and exploring the MeV sky

    High-resolution N-body Simulations of Galactic Cannibalism: The Magellanic Stream

    Full text link
    Hierarchical clustering represents the favoured paradigm for galaxy formation throughout the Universe; due to its proximity, the Magellanic system offers one of the few opportunities for astrophysicists to decompose the full six-dimensional phase-space history of a satellite in the midst of being cannibalised by its host galaxy. The availability of improved observational data for the Magellanic Stream and parallel advances in computational power has led us to revisit the canonical tidal model describing the disruption of the Small Magellanic Cloud and the consequent formation of the Stream. We suggest improvements to the tidal model in light of these recent advances.Comment: 6 pages, 4 figures, LaTeX (gcdv.sty). Refereed contribution to the 5th Galactic Chemodynamics conference held in Swinburne, July 2003. Accepted for publication in PASA. Version with high resolution figures available at http://astronomy.swin.edu.au/staff/tconnors/publications.htm

    Biomarker Exploration in Human Peripheral Blood Mononuclear Cells for Monitoring Sulforaphane Treatment Responses in Autism Spectrum Disorder

    Get PDF
    Autism Spectrum Disorder (ASD) is one of the most common neurodevelopmental disorders with no drugs treating the core symptoms and no validated biomarkers for clinical use. The multi-functional phytochemical sulforaphane affects many of the biochemical abnormalities associated with ASD. We investigated potential molecular markers from three ASD-associated physiological pathways that can be affected by sulforaphane: redox metabolism/oxidative stress; heat shock response; and immune dysregulation/inflammation, in peripheral blood mononuclear cells (PBMCs) from healthy donors and patients with ASD. We first analyzed the mRNA levels of selected molecular markers in response to sulforaphane ex vivo treatment in PBMCs from healthy donors by real-time quantitative PCR. All of the tested markers showed quantifiability, accuracy and reproducibility. We then compared the expression levels of those markers in PBMCs taken from ASD patients in response to orally-delivered sulforaphane. The mRNA levels of cytoprotective enzymes (NQO1, HO-1, AKR1C1), and heat shock proteins (HSP27 and HSP70), increased. Conversely, mRNA levels of pro-inflammatory markers (IL-6, IL-1beta, COX-2 and TNF-alpha) decreased. Individually none is sufficiently specific or sensitive, but when grouped by function as two panels, these biomarkers show promise for monitoring pharmacodynamic responses to sulforaphane in both healthy and autistic humans, and providing guidance for biomedical interventions

    COMPTEL: Instrument description and performance

    Get PDF
    The imaging Compton telescope (COMPTEL) is one of the four gamma ray detectors aboard the Compton Gamma Ray Observatory (GRO). COMPTEL is sensitive to gamma rays from 800 keV to 30 MeV with a field of view of approximately 1 sr. Its angular resolution ranges between 1 and 2 degrees depending on the energy and incidence angle. The energy resolution of better than 10 percent FWHM enables COMPTEL to provide spectral resolution in the regime of astrophysical nuclear lines. The effective area varies typically from 10 to 50 cm(exp 2) depending on the energy and event selections made. In its telescope mode, COMPTEL is able to study a wide variety of objects, pointlike as well as extended in space. With 0.125 msec timing resolution, pulsed emission can be studied. In the single detector mode, COMPTEL uses two of its detectors to study the temporal spectral evolution of strong gamma ray bursts or transients

    Data analysis of the COMPTEL instrument on the NASA gamma ray observatory

    Get PDF
    The Compton imaging telescope (COMPTEL) on the Gamma Ray Observatory (GRO) is a wide field of view instrument. The coincidence measurement technique in two scintillation detector layers requires specific analysis methods. Straightforward event projection into the sky is impossible. Therefore, detector events are analyzed in a multi-dimensional dataspace using a gamma ray sky hypothesis convolved with the point spread function of the instrument in this dataspace. Background suppression and analysis techniques have important implications on the gamma ray source results for this background limited telescope. The COMPTEL collaboration applies a software system of analysis utilities, organized around a database management system. The use of this system for the assistance of guest investigators at the various collaboration sites and external sites is foreseen and allows different detail levels of cooperation with the COMPTEL institutes, dependent on the type of data to be studied
    corecore