1,102 research outputs found

    Solid-phase Submonomer Synthesis of Peptoid Polymers and their Self-Assembly into Highly-Ordered Nanosheets

    Get PDF
    Peptoids are a novel class of biomimetic, non-natural, sequence-specific heteropolymers that resist proteolysis, exhibit potent biological activity, and fold into higher order nanostructures. Structurally similar to peptides, peptoids are poly N-substituted glycines, where the side chains are attached to the nitrogen rather than the alpha-carbon. Their ease of synthesis and structural diversity allows testing of basic design principles to drive de novo design and engineering of new biologically-active and nanostructured materials

    Galaxy Star Formation as a Function of Environment in the Early Data Release of the Sloan Digital Sky Survey

    Get PDF
    We present in this paper a detailed analysis of the effect of environment on the star formation activity of galaxies within the Early Data Release (EDR) of the Sloan Digital Sky Survey (SDSS). We have used the Halpha emission line to derive the star formation rate (SFR) for each galaxy within a volume-limited sample of 8598 galaxies with 0.05 less than or equal to z less than or equal to 0.095 and M (r*) less than or equal to 20.45. We find that the SFR of galaxies is strongly correlated with the local ( projected) galaxy density, and thus we present here a density-SFR relation that is analogous to the density-morphology relation. The effect of density on the SFR of galaxies is seen in three ways. First, the overall distribution of SFRs is shifted to lower values in dense environments compared with the field population. Second, the effect is most noticeable for the strongly star-forming galaxies (Halpha EW > 5 Angstrom) in the 75th percentile of the SFR distribution. Third, there is a break ( or characteristic density) in the density-SFR relation at a local galaxy density of similar to1 h(75)(-2) Mpc(-2). To understand this break further, we have studied the SFR of galaxies as a function of clustercentric radius from 17 clusters and groups objectively selected from the SDSS EDR data. The distribution of SFRs of cluster galaxies begins to change, compared with the field population, at a clustercentric radius of 3-4 virial radii (at the >1sigma statistical significance), which is consistent with the characteristic break in density that we observe in the density-SFR relation. This effect with clustercentric radius is again most noticeable for the most strongly star-forming galaxies. Our tests suggest that the density-morphology relation alone is unlikely to explain the density-SFR relation we observe. For example, we have used the ( inverse) concentration index of SDSS galaxies to classify late-type galaxies and show that the distribution of the star-forming (EW Halpha > 5Angstrom) late-type galaxies is different in dense regions ( within 2 virial radii) compared with similar galaxies in the field. However, at present, we are unable to make definitive statements about the independence of the density-morphology and density-SFR relation. We have tested our work against potential systematic uncertainties including stellar absorption, reddening, SDSS survey strategy, SDSS analysis pipelines, and aperture bias. Our observations are in qualitative agreement with recent simulations of hierarchical galaxy formation that predict a decrease in the SFR of galaxies within the virial radius. Our results are in agreement with recent 2dF Galaxy Redshift Survey results as well as consistent with previous observations of a decrease in the SFR of galaxies in the cores of distant clusters. Taken together, these works demonstrate that the decrease in SFR of galaxies in dense environments is a universal phenomenon over a wide range in density (from 0.08 to 10 h(75)(-2) Mpc(-2)) and redshift (out to z similar or equal to 0.5)

    Habitat complexity influences the structure of food webs in Great Barrier Reef seagrass meadows

    Get PDF
    Structural habitat complexity is a fundamental attribute influencing ecological food webs. Simplification of complex habitats occurs due to both natural and anthropogenic pressures that can alter productivity of food webs. Relationships between food web structure and habitat complexity may be influenced by multiple mechanisms, and untangling these can be challenging. We investigated whether (1) size spectra vary across a gradient of habitat complexity in seagrass meadows and (2) structural complexity changes the importance of different primary producers supporting the food web (determined using stable isotope analysis) in the Great Barrier Reef World Heritage Area. We found that moderately complex meadows had much steeper size spectra slopes, caused by a higher abundance of smaller animals and fewer larger animals, while meadows on either end of the complexity scale (low and a single meadow with very high complexity) had shallower slopes, indicative of a more balanced distribution of animal sizes across the spectrum. We also found that the importance of epiphytic algae as a food source was high in most meadows, despite the increase in seagrass surface area on which epiphytes could grow. The consistent importance of epiphytic algae suggests that the changes in the availability of different potential food sources did not affect food web structure. Our findings indicate that food web structure may change with variations in structural complexity because of changes in the abundance of smaller and/or larger animals. Food web structure and food sources are important determinants of the dynamic stability of food webs. Size spectra analysis is already used as a monitoring tool for assessing populations of key fisheries species in commercial fishing operations, and thus, we recommend using size spectra as a proxy for assessing the structure of the food webs in different types of seagrass meadows. Size spectra may be a useful indicator of how different meadows provide for ecosystem services such as fisheries

    Creation of 3D Digital Anthropomorphic Phantoms which Model Actual Patient Non-rigid Body Motion as Determined from MRI and Position Tracking Studies of Volunteers

    Get PDF
    Background: Patient motion during emission imaging can create artifacts in the reconstructed emission distributions, which may mislead the diagnosis. For example, in myocardial-perfusion imaging, these artifacts can be mistaken for defects. Various software and hardware approaches have been developed to detect and compensate for motion. There are various ways of testing the effectiveness of motion correction methods applied in emission tomography, including the use of realistic digital anthropomorphic phantoms. Purpose: The purpose of this study was to create 3D digital anthropomorphic phantoms based on MRI data of volunteers undergoing a series of clinically relevant motions. These phantoms with combined position tracking were used to investigate both imaging-data-driven and motion tracking strategies to estimate and correct for patient motion. Methods: MRI scans were obtained of volunteers undergoing a series of clinically relevant movements. During the MRI, the motions were recorded by near-infra-red cameras tracking using external markers on the chest and abdomen. Individual-specific extended cardiac-torso (XCAT) phantoms were created fit to our volunteer MRI imaging data representing pre- and post-motion states. These XCAT phantoms were then used to generate activity and attenuation distributions. Monte Carlo methods will then be performed to simulate SPECT acquisitions, which will be used to evaluate various motion estimation and correction strategies. Results: Three volunteers were scanned in the MRI with concurrent external motion tracking. Each volunteer performed five separate motions including an axial slide, roll, shoulder twist, spine bend, and arm motion. These MRI scans were then manually digitalized into 3D anthropomorphic XCAT phantoms. Activity and attenuation distributions were created for each XCAT phantom, representing fifteen individual-specific motions. Conclusions: Our results will be combined with the external motion tracking data to determine if external motion tracking accurately reflects heart position in patients undergoing cardiac SPECT imaging. This data will also be used to evaluate other motion correction methods in the future

    Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue

    Get PDF
    Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue.National Institutes of Health (U.S.) (Grant R01-CA178636-02)National Institutes of Health (U.S.) (Grant R01-CA075289-18)National Institutes of Health (U.S.) (Grant F32-CA183400-03)United States. Air Force. Office of Scientific Research (Grant FA9550-12-1-0551)United States. Air Force. Office of Scientific Research (Grant FA9550-15-1-0473

    The role of herbivory in structuring tropical seagrass ecosystem service delivery

    Get PDF
    Seagrass meadows support key ecosystem services, via provision of food directly for herbivores, and indirectly to their predators. The importance of herbivores in seagrass meadows has been well-documented, but the links between food webs and ecosystem services in seagrass meadows have not previously been made explicit. Herbivores interact with ecosystem services – including carbon sequestration, cultural values, and coastal protection. Interactions can be positive or negative and depend on a range of factors including the herbivore identity and the grazing type and intensity. There can be unintended consequences from management actions based on a poor understanding of trade-offs that occur with complex seagrass-herbivore interactions. Tropical seagrass meadows support a diversity of grazers spanning the meso-, macro- and megaherbivore scales. We present a conceptual model to describe how multiple ecosystem services are influenced by herbivore pressure in tropical seagrass meadows. Our model suggests that a balanced ecosystem, incorporating both seagrass and herbivore diversity, is likely to sustain the broadest range of ecosystem services. Our framework suggests the pathway to achieve desired ecosystem services outcomes requires knowledge on four key areas: (1) how size classes of herbivores interact to structure seagrass; (2) desired community and management values; (3) seagrass responses to top-down and bottom-up controls; (4) the pathway from intermediate to final ecosystem services and human benefits. We suggest research should be directed to these areas. Herbivory is a major structuring influence in tropical seagrass systems and needs to be considered for effective management of these critical habitats and their services
    corecore