12,822 research outputs found
Traveling wave tube circuit
A traveling wave tube (TWT) has a slow wave structure (SWS) which is severed into two or more sections. A signal path, connects the end of an SWS section to the beginning of the following SWS section. The signal path comprises an impedance matching coupler (IMC), followed by an isolator, a variable phase shifter, and a second IMC. The aggregate band pass characteristic of the components in the signal path is chosen to reject, or strongly attenuate, all frequencies outside the desired operating frequency range of the TWT and yet pass, with minimal attenuation in the forward direction, all frequencies within the desired operating frequency range. The isolator is chosen to reject, or strongly attenuate, waves, of all frequencies, which propagate in the backward direction. The aggregate phase shift characteristic of the components in the signal path is chosen to apply signal power to the beginning of the following SWS section with the phase angle yielding maximum efficiency
The 20 and 30 GHz MMIC technology for future space communication antenna system
The development of fully monolithic gallium arsenide receive and transmit modules is described. These modules are slated for phased array antenna applications in future 30/20 gigahertz communications satellite systems. Performance goals and various approaches to achieve them are discussed. The latest design and performance results of components, submodules and modules are presented
Coupled cavity traveling wave tube with velocity tapering
A coupled cavity traveling wave tube with a velocity taper, which affords beam wave resynchronization and thereby enhances is described. The wave velocity reduction is achieved by reducing the resonant frequencies of the individual resonant cavities as a function of the distance from the electron gun, through changes in internal cavity dimensions. The required changes in cavity dimensions can be accomplished by gradually increasing the cavity radius decreasing the gap length from cavity to cavity. The velocity reduction is carried out without an increase in circuit resistive losses and the upper and lower cut off frequencies are reduced in approximately the same manner
Aerospace applications of high temperature superconductivity
Space application of high temperature superconducting (HTS) materials may occur before most terrestrial applications because of the passive cooling possibilities in space and because of the economic feasibility of introducing an expensive new technology which has a significant system benefit in space. NASA Lewis Research Center has an ongoing program to develop space technology capitalizing on the potential benefit of HTS materials. The applications being pursued include space communications, power and propulsion systems, and magnetic bearings. In addition, NASA Lewis is pursuing materials research to improve the performance of HTS materials for space applications
MMIC technology for advanced space communications systems
The current NASA program for 20 and 30 GHz monolithic microwave integrated circuit (MMIC) technology is reviewed. The advantages of MMIC are discussed. Millimeter wavelength MMIC applications and technology for communications systems are discussed. Passive and active MMIC compatible components for millimeter wavelength applications are investigated. The cost of a millimeter wavelength MMIC's is projected
Risk factors associated with sudden death vs. congestive heart failure or arterial thromboembolism in cats with hypertrophic cardiomyopathy
The Regulation and Development of Bioremediation
The authors describe how federal statutes regulating hazardous wastes create both incentives and disincentives for exploiting the large potential of bioremediation. Ultimately, they argue for regulation attending more to comparative risks and costs
- …
