874 research outputs found

    Towards More Precise Photometric Redshifts: Calibration Via CCD Photometry

    Get PDF
    We present the initial results from a deep, multi-band photometric survey of selected high Galactic latitude redshift fields. Previous work using the photographic data of Koo and Kron demonstrated that the distribution of galaxies in the multi-dimensional flux space U B R I is nearly planar. The position of a galaxy within this plane is determined by its redshift, luminosity and spectral type. Using recently acquired deep CCD photometry in existing, published redshift fields, we have redetermined the distribution of galaxies in this four-dimensional magnitude space. Furthermore, from our CCD photometry and the published redshifts, we have quantified the photometric-redshift relation within the standard AB magnitude system. This empirical relation has a measured dispersion of approximately 0.02 for z < 0.4. With this work we are reaching the asymptotic intrinsic dispersions that were predicted from simulated distributions of galaxy colors.Comment: submitted to the Astrophysical Journal Letter

    Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris)

    Get PDF
    This work was funded jointly by the Biotechnology and Biological Sciences Research Council, the Department for Environment, Food and Rural Affairs, the Natural Environment Research Council, the Scottish Government, and The Wellcome Trust, under the Insect Pollinators Initiative (United Kingdom) Grant BB/ 1000313/1 (to C.N.C.).The global decline in the abundance and diversity of insect pollinators could result from habitat loss, disease, and pesticide exposure. The contribution of the neonicotinoid insecticides (e.g., clothianidin and imidacloprid) to this decline is controversial, and key to understanding their risk is whether the astonishingly low levels found in the nectar and pollen of plants is sufficient to deliver neuroactive levels to their site of action: the bee brain. Here we show that bumblebees (Bombusterrestris audax) fed field levels [10 nM, 2.1 ppb (w/w)] of neonicotinoid accumulate between 4 and 10 nM in their brains within 3 days. Acute (minutes) exposure of cultured neurons to 10 nM clothianidin, but not imidacloprid, causes a nicotinic acetylcholine receptor-dependent rapid mitochondrial depolarization. However, a chronic (2 days) exposure to 1 nM imidacloprid leads to a receptor-dependent increased sensitivity to a normally innocuous level of acetylcholine, which now also causes rapid mitochondrial depolarization in neurons. Finally, colonies exposed to this level of imidacloprid show deficits in colony growth and nest condition compared with untreated colonies. These findings provide a mechanistic explanation for the poor navigation and foraging observed in neonicotinoid treated bumblebee colonies.Publisher PDFPeer reviewe

    The Statistical Approach to Quantifying Galaxy Evolution

    Get PDF
    Studies of the distribution and evolution of galaxies are of fundamental importance to modern cosmology; these studies, however, are hampered by the complexity of the competing effects of spectral and density evolution. Constructing a spectroscopic sample that is able to unambiguously disentangle these processes is currently excessively prohibitive due to the observational requirements. This paper extends and applies an alternative approach that relies on statistical estimates for both distance (z) and spectral type to a deep multi-band dataset that was obtained for this exact purpose. These statistical estimates are extracted directly from the photometric data by capitalizing on the inherent relationships between flux, redshift, and spectral type. These relationships are encapsulated in the empirical photometric redshift relation which we extend to z ~ 1.2, with an intrinsic dispersion of dz = 0.06. We also develop realistic estimates for the photometric redshift error for individual objects, and introduce the utilization of the galaxy ensemble as a tool for quantifying both a cosmological parameter and its measured error. We present deep, multi-band, optical number counts as a demonstration of the integrity of our sample. Using the photometric redshift and the corresponding redshift error, we can divide our data into different redshift intervals and spectral types. As an example application, we present the number redshift distribution as a function of spectral type.Comment: 40 pages (LaTex), 21 Figures, requires aasms4.sty; Accepted by the Astrophysical Journa

    Spectral Templates from Multicolor Redshift Surveys

    Get PDF
    Understanding how the physical properties of galaxies (e.g. their spectral type or age) evolve as a function of redshift relies on having an accurate representation of galaxy spectral energy distributions. While it has been known for some time that galaxy spectra can be reconstructed from a handful of orthogonal basis templates, the underlying basis is poorly constrained. The limiting factor has been the lack of large samples of galaxies (covering a wide range in spectral type) with high signal-to-noise spectrophotometric observations. To alleviate this problem we introduce here a new technique for reconstructing galaxy spectral energy distributions directly from samples of galaxies with broadband photometric data and spectroscopic redshifts. Exploiting the statistical approach of the Karhunen-Loeve expansion, our iterative training procedure increasingly improves the eigenbasis, so that it provides better agreement with the photometry. We demonstrate the utility of this approach by applying these improved spectral energy distributions to the estimation of photometric redshifts for the HDF sample of galaxies. We find that in a small number of iterations the dispersion in the photometric redshifts estimator (a comparison between predicted and measured redshifts) can decrease by up to a factor of 2.Comment: 25 pages, 9 figures, LaTeX AASTeX, accepted for publication in A

    Characterisation of the mode of action of Aurodox, a Type III secretion system inhibitor from Streptomyces goldiniensis

    Get PDF
    Recent work has demonstrated that the polyketide natural product Aurodox, from Streptomyces goldiniensis is able to block the pathogenesis of the murine pathogen Citrobacter rodentium. In this work we aimed to aimed gain a better understanding of the mechanism of action of the compound. We show that Aurodox downregulates the expression of the Type Three Secretion Systems of enteropathogenic and enterohaemorhagic Escherichia coli. Furthermore, we have used transcriptomic analysis to show that Aurodox inhibits the expression at the transcriptional level by repressing the master regulator, ler. Our data support a model in which Aurodox acts upstream of ler and not directly on the secretion system itself. Finally, we have shown that Aurodox, unlike some traditional antibiotics, does not induce expression of RecA, which is essential for the production of Shiga toxin. We propose that these properties nominate Aurodox as a promising anti-virulence therapy for the treatment of these infections

    Neural Responses to Naturalistic Clips of Behaving Animals Under Two Different Task Contexts

    Get PDF
    The human brain rapidly deploys semantic information during perception to facilitate our interaction with the world. These semantic representations are encoded in the activity of distributed populations of neurons (Haxby et al., 2001; McClelland and Rogers, 2003; Kriegeskorte et al., 2008b) and command widespread cortical real estate (Binder et al., 2009; Huth et al., 2012). The neural representation of a stimulus can be described as a location (i.e., response vector) in a high-dimensional neural representational space (Kriegeskorte and Kievit, 2013; Haxby et al., 2014). This resonates with behavioral and theoretical work describing mental representations of objects and actions as being organized in a multidimensional psychological space (Attneave, 1950; Shepard, 1958, 1987; Edelman, 1998; Gärdenfors and Warglien, 2012). Current applications of this framework to neural representation (e.g., Kriegeskorte et al., 2008b) often implicitly assume that these neural representational spaces are relatively fixed and context-invariant. In contrast, earlier work emphasized the importance of attention and task demands in actively reshaping representational space (Shepard, 1964; Tversky, 1977; Nosofsky, 1986; Kruschke, 1992). A growing body of work in both electrophysiology (e.g., Sigala and Logothetis, 2002; Sigala, 2004; Cohen and Maunsell, 2009; Reynolds and Heeger, 2009) and human neuroimaging (e.g., Hon et al., 2009; Jehee et al., 2011; Brouwer and Heeger, 2013; Çukur et al., 2013; Sprague and Serences, 2013; Harel et al., 2014; Erez and Duncan, 2015; Nastase et al., 2017) has suggested mechanisms by which behavioral goals dynamically alter neural representation

    Partitioning colony size variation into growth and partial mortality

    Get PDF
    We thank the Australian Research Council for fellowship and research support. M.A.D. is funded by a Leverhulme Fellowship and by the John Templeton Foundation grant no. 60501.Body size is a trait that broadly influences the demography and ecology of organisms. In unitary organisms, body size tends to increase with age. In modular organisms, body size can either increase or decrease with age, with size changes being the net difference between modules added through growth and modules lost through partial mortality. Rates of colony extension are independent of body size, but net growth is allometric, suggesting a significant role of size-dependent mortality. In this study, we develop a generalizable model of partitioned growth and partial mortality and apply it to data from 11 species of reef-building coral. We show that corals generally grow at constant radial increments that are size independent, and that partial mortality acts more strongly on small colonies. We also show a clear life-history trade-off between growth and partial mortality that is governed by growth form. This decomposition of net growth can provide mechanistic insights into the relative demographic effects of the intrinsic factors (e.g. acquisition of food and life-history strategy), which tend to affect growth, and extrinsic factors (e.g. physical damage, and predation), which tend to affect mortality.PostprintPostprintPeer reviewe

    SPICES II. Optical and Near-Infrared Identifications of Faint X-Ray Sources from Deep Chandra Observations of Lynx

    Get PDF
    We present our first results on field X-ray sources detected in a deep, 184.7 ks observation with the ACIS-I camera on Chandra. The observations target the Lynx field of SPICES, and contains three known X-ray-emitting clusters out to z=1.27. Not including the known clusters, in the 17'x17' ACIS-I field we detect 132 sources in the 0.5-2 keV (soft) X-ray band down to a limiting flux of \~1.7e-16 erg/cm2/s and 111 sources in the 2-10 keV (hard) X-ray band down to a limiting flux of ~1.3e-15 erg/cm2/s. The combined catalog contains a total of 153 sources, of which 42 are detected only in the soft band and 21 are detected only in the hard band. Confirming previous Chandra results, we find that the fainter sources have harder X-ray spectra, providing a consistent solution to the long-standing `spectral paradox'. From deep optical and near-infrared follow-up data, 77% of the X-ray sources have optical counterparts to I=24 and 71% of the X-ray sources have near-infrared counterparts to K=20. Four of the 24 sources in the near-IR field are associated with extremely red objects (EROs; I-K>4). We have obtained spectroscopic redshifts with the Keck telescopes of 18 of the Lynx Chandra sources. These sources comprise a mix of broad-lined active galaxies, apparently normal galaxies, and two late-type Galactic dwarfs. Intriguingly, one Galactic source is identified with an M7 dwarf exhibiting non-transient, hard X-ray emission. We review non-AGN mechanisms to produce X-ray emission and discuss properties of the Lynx Chandra sample in relation to other samples of X-ray and non-X-ray sources.Comment: 42 pages, 16 figures. Accepted for publication in the May 2002 Astronomical Journa
    • …
    corecore