874 research outputs found
Towards More Precise Photometric Redshifts: Calibration Via CCD Photometry
We present the initial results from a deep, multi-band photometric survey of
selected high Galactic latitude redshift fields. Previous work using the
photographic data of Koo and Kron demonstrated that the distribution of
galaxies in the multi-dimensional flux space U B R I is nearly planar. The
position of a galaxy within this plane is determined by its redshift,
luminosity and spectral type. Using recently acquired deep CCD photometry in
existing, published redshift fields, we have redetermined the distribution of
galaxies in this four-dimensional magnitude space. Furthermore, from our CCD
photometry and the published redshifts, we have quantified the
photometric-redshift relation within the standard AB magnitude system. This
empirical relation has a measured dispersion of approximately 0.02 for z < 0.4.
With this work we are reaching the asymptotic intrinsic dispersions that were
predicted from simulated distributions of galaxy colors.Comment: submitted to the Astrophysical Journal Letter
Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris)
This work was funded jointly by the Biotechnology and Biological Sciences Research Council, the Department for Environment, Food and Rural Affairs, the Natural Environment Research Council, the Scottish Government, and The Wellcome Trust, under the Insect Pollinators Initiative (United Kingdom) Grant BB/ 1000313/1 (to C.N.C.).The global decline in the abundance and diversity of insect pollinators could result from habitat loss, disease, and pesticide exposure. The contribution of the neonicotinoid insecticides (e.g., clothianidin and imidacloprid) to this decline is controversial, and key to understanding their risk is whether the astonishingly low levels found in the nectar and pollen of plants is sufficient to deliver neuroactive levels to their site of action: the bee brain. Here we show that bumblebees (Bombusterrestris audax) fed field levels [10 nM, 2.1 ppb (w/w)] of neonicotinoid accumulate between 4 and 10 nM in their brains within 3 days. Acute (minutes) exposure of cultured neurons to 10 nM clothianidin, but not imidacloprid, causes a nicotinic acetylcholine receptor-dependent rapid mitochondrial depolarization. However, a chronic (2 days) exposure to 1 nM imidacloprid leads to a receptor-dependent increased sensitivity to a normally innocuous level of acetylcholine, which now also causes rapid mitochondrial depolarization in neurons. Finally, colonies exposed to this level of imidacloprid show deficits in colony growth and nest condition compared with untreated colonies. These findings provide a mechanistic explanation for the poor navigation and foraging observed in neonicotinoid treated bumblebee colonies.Publisher PDFPeer reviewe
The Statistical Approach to Quantifying Galaxy Evolution
Studies of the distribution and evolution of galaxies are of fundamental
importance to modern cosmology; these studies, however, are hampered by the
complexity of the competing effects of spectral and density evolution.
Constructing a spectroscopic sample that is able to unambiguously disentangle
these processes is currently excessively prohibitive due to the observational
requirements. This paper extends and applies an alternative approach that
relies on statistical estimates for both distance (z) and spectral type to a
deep multi-band dataset that was obtained for this exact purpose.
These statistical estimates are extracted directly from the photometric data
by capitalizing on the inherent relationships between flux, redshift, and
spectral type. These relationships are encapsulated in the empirical
photometric redshift relation which we extend to z ~ 1.2, with an intrinsic
dispersion of dz = 0.06. We also develop realistic estimates for the
photometric redshift error for individual objects, and introduce the
utilization of the galaxy ensemble as a tool for quantifying both a
cosmological parameter and its measured error. We present deep, multi-band,
optical number counts as a demonstration of the integrity of our sample. Using
the photometric redshift and the corresponding redshift error, we can divide
our data into different redshift intervals and spectral types. As an example
application, we present the number redshift distribution as a function of
spectral type.Comment: 40 pages (LaTex), 21 Figures, requires aasms4.sty; Accepted by the
Astrophysical Journa
Spectral Templates from Multicolor Redshift Surveys
Understanding how the physical properties of galaxies (e.g. their spectral
type or age) evolve as a function of redshift relies on having an accurate
representation of galaxy spectral energy distributions. While it has been known
for some time that galaxy spectra can be reconstructed from a handful of
orthogonal basis templates, the underlying basis is poorly constrained. The
limiting factor has been the lack of large samples of galaxies (covering a wide
range in spectral type) with high signal-to-noise spectrophotometric
observations. To alleviate this problem we introduce here a new technique for
reconstructing galaxy spectral energy distributions directly from samples of
galaxies with broadband photometric data and spectroscopic redshifts.
Exploiting the statistical approach of the Karhunen-Loeve expansion, our
iterative training procedure increasingly improves the eigenbasis, so that it
provides better agreement with the photometry. We demonstrate the utility of
this approach by applying these improved spectral energy distributions to the
estimation of photometric redshifts for the HDF sample of galaxies. We find
that in a small number of iterations the dispersion in the photometric
redshifts estimator (a comparison between predicted and measured redshifts) can
decrease by up to a factor of 2.Comment: 25 pages, 9 figures, LaTeX AASTeX, accepted for publication in A
Characterisation of the mode of action of Aurodox, a Type III secretion system inhibitor from Streptomyces goldiniensis
Recent work has demonstrated that the polyketide natural product Aurodox, from Streptomyces goldiniensis is able to block the pathogenesis of the murine pathogen Citrobacter rodentium. In this work we aimed to aimed gain a better understanding of the mechanism of action of the compound. We show that Aurodox downregulates the expression of the Type Three Secretion Systems of enteropathogenic and enterohaemorhagic Escherichia coli. Furthermore, we have used transcriptomic analysis to show that Aurodox inhibits the expression at the transcriptional level by repressing the master regulator, ler. Our data support a model in which Aurodox acts upstream of ler and not directly on the secretion system itself. Finally, we have shown that Aurodox, unlike some traditional antibiotics, does not induce expression of RecA, which is essential for the production of Shiga toxin. We propose that these properties nominate Aurodox as a promising anti-virulence therapy for the treatment of these infections
Neural Responses to Naturalistic Clips of Behaving Animals Under Two Different Task Contexts
The human brain rapidly deploys semantic information during perception to facilitate our interaction with the world. These semantic representations are encoded in the activity of distributed populations of neurons (Haxby et al., 2001; McClelland and Rogers, 2003; Kriegeskorte et al., 2008b) and command widespread cortical real estate (Binder et al., 2009; Huth et al., 2012). The neural representation of a stimulus can be described as a location (i.e., response vector) in a high-dimensional neural representational space (Kriegeskorte and Kievit, 2013; Haxby et al., 2014). This resonates with behavioral and theoretical work describing mental representations of objects and actions as being organized in a multidimensional psychological space (Attneave, 1950; Shepard, 1958, 1987; Edelman, 1998; Gärdenfors and Warglien, 2012). Current applications of this framework to neural representation (e.g., Kriegeskorte et al., 2008b) often implicitly assume that these neural representational spaces are relatively fixed and context-invariant. In contrast, earlier work emphasized the importance of attention and task demands in actively reshaping representational space (Shepard, 1964; Tversky, 1977; Nosofsky, 1986; Kruschke, 1992). A growing body of work in both electrophysiology (e.g., Sigala and Logothetis, 2002; Sigala, 2004; Cohen and Maunsell, 2009; Reynolds and Heeger, 2009) and human neuroimaging (e.g., Hon et al., 2009; Jehee et al., 2011; Brouwer and Heeger, 2013; Çukur et al., 2013; Sprague and Serences, 2013; Harel et al., 2014; Erez and Duncan, 2015; Nastase et al., 2017) has suggested mechanisms by which behavioral goals dynamically alter neural representation
Partitioning colony size variation into growth and partial mortality
We thank the Australian Research Council for fellowship and research support. M.A.D. is funded by a Leverhulme Fellowship and by the John Templeton Foundation grant no. 60501.Body size is a trait that broadly influences the demography and ecology of organisms. In unitary organisms, body size tends to increase with age. In modular organisms, body size can either increase or decrease with age, with size changes being the net difference between modules added through growth and modules lost through partial mortality. Rates of colony extension are independent of body size, but net growth is allometric, suggesting a significant role of size-dependent mortality. In this study, we develop a generalizable model of partitioned growth and partial mortality and apply it to data from 11 species of reef-building coral. We show that corals generally grow at constant radial increments that are size independent, and that partial mortality acts more strongly on small colonies. We also show a clear life-history trade-off between growth and partial mortality that is governed by growth form. This decomposition of net growth can provide mechanistic insights into the relative demographic effects of the intrinsic factors (e.g. acquisition of food and life-history strategy), which tend to affect growth, and extrinsic factors (e.g. physical damage, and predation), which tend to affect mortality.PostprintPostprintPeer reviewe
SPICES II. Optical and Near-Infrared Identifications of Faint X-Ray Sources from Deep Chandra Observations of Lynx
We present our first results on field X-ray sources detected in a deep, 184.7
ks observation with the ACIS-I camera on Chandra. The observations target the
Lynx field of SPICES, and contains three known X-ray-emitting clusters out to
z=1.27. Not including the known clusters, in the 17'x17' ACIS-I field we detect
132 sources in the 0.5-2 keV (soft) X-ray band down to a limiting flux of
\~1.7e-16 erg/cm2/s and 111 sources in the 2-10 keV (hard) X-ray band down to a
limiting flux of ~1.3e-15 erg/cm2/s. The combined catalog contains a total of
153 sources, of which 42 are detected only in the soft band and 21 are detected
only in the hard band. Confirming previous Chandra results, we find that the
fainter sources have harder X-ray spectra, providing a consistent solution to
the long-standing `spectral paradox'. From deep optical and near-infrared
follow-up data, 77% of the X-ray sources have optical counterparts to I=24 and
71% of the X-ray sources have near-infrared counterparts to K=20. Four of the
24 sources in the near-IR field are associated with extremely red objects
(EROs; I-K>4). We have obtained spectroscopic redshifts with the Keck
telescopes of 18 of the Lynx Chandra sources. These sources comprise a mix of
broad-lined active galaxies, apparently normal galaxies, and two late-type
Galactic dwarfs. Intriguingly, one Galactic source is identified with an M7
dwarf exhibiting non-transient, hard X-ray emission. We review non-AGN
mechanisms to produce X-ray emission and discuss properties of the Lynx Chandra
sample in relation to other samples of X-ray and non-X-ray sources.Comment: 42 pages, 16 figures. Accepted for publication in the May 2002
Astronomical Journa
- …