67 research outputs found

    Steric Determinants of Pt/DNA Interactions and Anticancer Activity

    Get PDF
    Studies directed at establishing the structural features that control Pt/DNA interactions and the anticancer activity of Pt drugs are described. [1H, 15N]-HSQC 2D NMR spectroscopic studies of the reactions of cisplatin with oligonucleotides containing ApG and GpA binding sites reveal dramatic differences in the rates of formation of monofunctional adducts at the two sites. When the reactant is cis-[Pt(NH3)2(OH2)2]2+ no such differences are observed suggesting that outer-sphere interactions between the reactant and the oligonucleotide may play a substantial role in determining the rates. Rates of closure to the bifunctional adducts are similar to those observed for cisplatin. Studies of the adduct profiles formed by sterically bulky and/or optically active complexes reveal that steric interactions play a major role in mediating the binding of Pt(ll) to DNA but that hydrogen bonds play less of a role. In vitro cytotoxic activities for these complexes do not always follow the trends that would be expected on the basis of the adduct profiles

    The epidemic of extended-spectrum-beta-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx

    Get PDF
    The Escherichia coli sequence type 131 (ST131) clone is notorious for extraintestinal infections, fluoroquinolone resistance, and extended-spectrum beta-lactamase (ESBL) production, attributable to a CTX-M-15-encoding mobile element. Here, we applied pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing to reconstruct the evolutionary history of the ST131 clone. PFGE-based cluster analyses suggested that both fluoroquinolone resistance and ESBL production had been acquired by multiple ST131 sublineages through independent genetic events. In contrast, the more robust whole-genome-sequence-based phylogenomic analysis revealed that fluoroquinolone resistance was confined almost entirely to a single, rapidly expanding ST131 subclone, designated H30-R. Strikingly, 91% of the CTX-M-15-producing isolates also belonged to a single, well-defined clade nested within H30-R, which was named H30-Rx due to its more extensive resistance. Despite its tight clonal relationship with H30Rx, the CTX-M-15 mobile element was inserted variably in plasmid and chromosomal locations within the H30-Rx genome. Screening of a large collection of recent clinical E. coli isolates both confirmed the global clonal expansion of H30-Rx and revealed its disproportionate association with sepsis (relative risk, 7.5; P < 0.001). Together, these results suggest that the high prevalence of CTX-M-15 production among ST131 isolates is due primarily to the expansion of a single, highly virulent subclone, H30-Rx. IMPORTANCE We applied an advanced genomic approach to study the recent evolutionary history of one of the most important Escherichia coli strains in circulation today. This strain, called sequence type 131 (ST131), causes multidrug-resistant bladder, kidney, and bloodstream infections around the world. The rising prevalence of antibiotic resistance in E. coli is making these infections more difficult to treat and is leading to increased mortality. Past studies suggested that many different ST131 strains gained resistance to extended-spectrum cephalosporins independently. In contrast, our research indicates that most extended-spectrum-cephalosporin-resistant ST131 strains belong to a single highly pathogenic subclone, called H30-Rx. The clonal nature of H30-Rx may provide opportunities for vaccine or transmission prevention-based control strategies, which could gain importance as H30-Rx and other extraintestinal pathogenic E. coli subclones become resistant to our best antibiotics

    The Respiratory Protection Effectiveness Clinical Trial (ResPECT): a cluster-randomized comparison of respirator and medical mask effectiveness against respiratory infections in healthcare personnel.

    Get PDF
    BACKGROUND: Although N95 filtering facepiece respirators and medical masks are commonly used for protection against respiratory infections in healthcare settings, more clinical evidence is needed to understand the optimal settings and exposure circumstances for healthcare personnel to use these devices. A lack of clinically germane research has led to equivocal, and occasionally conflicting, healthcare respiratory protection recommendations from public health organizations, professional societies, and experts. METHODS: The Respiratory Protection Effectiveness Clinical Trial (ResPECT) is a prospective comparison of respiratory protective equipment to be conducted at multiple U.S. study sites. Healthcare personnel who work in outpatient settings will be cluster-randomized to wear N95 respirators or medical masks for protection against infections during respiratory virus season. Outcome measures will include laboratory-confirmed viral respiratory infections, acute respiratory illness, and influenza-like illness. Participant exposures to patients, coworkers, and others with symptoms and signs of respiratory infection, both within and beyond the workplace, will be recorded in daily diaries. Adherence to study protocols will be monitored by the study team. DISCUSSION: ResPECT is designed to better understand the extent to which N95s and MMs reduce clinical illness among healthcare personnel. A fully successful study would produce clinically relevant results that help clinician-leaders make reasoned decisions about protection of healthcare personnel against occupationally acquired respiratory infections and prevention of spread within healthcare systems. TRIAL REGISTRATION: The trial is registered at clinicaltrials.gov, number NCT01249625 (11/29/2010)

    The epidemic of extended-spectrum-β-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx

    Get PDF
    The Escherichia coli sequence type 131 (ST131) clone is notorious for extraintestinal infections, fluoroquinolone resistance, and extended-spectrum beta-lactamase (ESBL) production, attributable to a CTX-M-15-encoding mobile element. Here, we applied pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing to reconstruct the evolutionary history of the ST131 clone. PFGE-based cluster analyses suggested that both fluoroquinolone resistance and ESBL production had been acquired by multiple ST131 sublineages through independent genetic events. In contrast, the more robust whole-genome-sequence-based phylogenomic analysis revealed that fluoroquinolone resistance was confined almost entirely to a single, rapidly expanding ST131 subclone, designated H30-R. Strikingly, 91% of the CTX-M-15-producing isolates also belonged to a single, well-defined clade nested within H30-R, which was namedH30-Rx due to its more extensive resistance. Despite its tight clonal relationship with H30Rx, the CTX-M-15 mobile element was inserted variably in plasmid and chromosomal locations within the H30-Rx genome. Screening of a large collection of recent clinical E. coli isolates both confirmed the global clonal expansion of H30-Rx and revealed its disproportionate association with sepsis (relative risk, 7.5; P \u3c 0.001). Together, these results suggest that the high prevalence of CTX-M-15 production among ST131 isolates is due primarily to the expansion of a single, highly virulent subclone, H30-Rx

    Eradication of multidrug-resistant Acinetobacter baumannii in a female patient with total hip arthroplasty, with debridement and retention: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Multidrug-resistant <it>Acinetobacter baumannii </it>has become a significant cause of healthcare-associated infections, but few reports have addressed <it>Acinetobacter baumannii </it>infections associated with orthopedic devices. The current recommended treatment for complicated infections due to orthopedic devices, including resistant gram-negative rods, consists of antimicrobial therapy with debridement and removal of implants.</p> <p>Case presentation</p> <p>The patient, a 47-year-old woman, had previously had a prior total hip arthroplasty at 16 years of age for a complex femoral neck fracture, and multiple subsequent revisions. This time, she underwent a fifth revision secondary to pain. Surgery was complicated by hypotension resulting in transfer to the intensive care unit and prolonged respiratory failure. She received peri-operative cefazolin but postoperatively developed surgical wound drainage requiring debridement of a hematoma. Cultures of this grew ampicillin-sensitive <it>Enterococcus </it>and <it>Acinetobacter baumannii </it>(sensitive only to amikacin and imipenem). The patient was started on imipenem. Removal of the total hip arthroplasty was not recommended because of the recent surgical complications, and the patient was eventually discharged home. She was seen weekly for laboratory tests and examinations and, after 4 months of therapy, the imipenem was discontinued. She did well clinically for 7 months before recurrent pain led to removal of the total hip arthroplasty. Intra-operative cultures grew ampicillin-sensitive <it>Enterococcus </it>and coagulase-negative <it>Staphylococcus </it>but no multidrug-resistant <it>Acinetobacter baumannii</it>. The patient received ampicillin for 8 weeks and had not had recurrent infection at the time of writing, 37 months after discontinuing imipenem.</p> <p>Conclusion</p> <p>We describe the successful treatment of an acute infection from multidrug-resistant <it>Acinetobacter baumannii </it>with debridement and retention of the total hip arthroplasty, using monotherapy with imipenem. This case challenges the general assumption that all orthopedic-device infections due to multidrug-resistant gram-negative organisms will require hardware removal. Further studies are needed to determine if organisms such as multidrug-resistant <it>Acinetobacter baumannii </it>are amenable to treatment with hardware retention.</p

    Eradication of multidrug-resistant Acinetobacter baumannii in a female patient with total hip arthroplasty, with debridement and retention: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Multidrug-resistant <it>Acinetobacter baumannii </it>has become a significant cause of healthcare-associated infections, but few reports have addressed <it>Acinetobacter baumannii </it>infections associated with orthopedic devices. The current recommended treatment for complicated infections due to orthopedic devices, including resistant gram-negative rods, consists of antimicrobial therapy with debridement and removal of implants.</p> <p>Case presentation</p> <p>The patient, a 47-year-old woman, had previously had a prior total hip arthroplasty at 16 years of age for a complex femoral neck fracture, and multiple subsequent revisions. This time, she underwent a fifth revision secondary to pain. Surgery was complicated by hypotension resulting in transfer to the intensive care unit and prolonged respiratory failure. She received peri-operative cefazolin but postoperatively developed surgical wound drainage requiring debridement of a hematoma. Cultures of this grew ampicillin-sensitive <it>Enterococcus </it>and <it>Acinetobacter baumannii </it>(sensitive only to amikacin and imipenem). The patient was started on imipenem. Removal of the total hip arthroplasty was not recommended because of the recent surgical complications, and the patient was eventually discharged home. She was seen weekly for laboratory tests and examinations and, after 4 months of therapy, the imipenem was discontinued. She did well clinically for 7 months before recurrent pain led to removal of the total hip arthroplasty. Intra-operative cultures grew ampicillin-sensitive <it>Enterococcus </it>and coagulase-negative <it>Staphylococcus </it>but no multidrug-resistant <it>Acinetobacter baumannii</it>. The patient received ampicillin for 8 weeks and had not had recurrent infection at the time of writing, 37 months after discontinuing imipenem.</p> <p>Conclusion</p> <p>We describe the successful treatment of an acute infection from multidrug-resistant <it>Acinetobacter baumannii </it>with debridement and retention of the total hip arthroplasty, using monotherapy with imipenem. This case challenges the general assumption that all orthopedic-device infections due to multidrug-resistant gram-negative organisms will require hardware removal. Further studies are needed to determine if organisms such as multidrug-resistant <it>Acinetobacter baumannii </it>are amenable to treatment with hardware retention.</p

    Genomewide Association Study for Determinants of HIV-1 Acquisition and Viral Set Point in HIV-1 Serodiscordant Couples with Quantified Virus Exposure

    Get PDF
    Host genetic factors may be important determinants of HIV-1 sexual acquisition. We performed a genome-wide association study (GWAS) for host genetic variants modifying HIV-1 acquisition and viral control in the context of a cohort of African HIV-1 serodiscordant heterosexual couples. To minimize misclassification of HIV-1 risk, we quantified HIV-1 exposure, using data including plasma HIV-1 concentrations, gender, and condom use.We matched couples without HIV-1 seroconversion to those with seroconversion by quantified HIV-1 exposure risk. Logistic regression of single nucleotide polymorphisms (SNPs) for 798 samples from 496 HIV-1 infected and 302 HIV-1 exposed, uninfected individuals was performed to identify factors associated with HIV-1 acquisition. In addition, a linear regression analysis was performed using SNP data from a subset (n = 403) of HIV-1 infected individuals to identify factors predicting plasma HIV-1 concentrations.After correcting for multiple comparisons, no SNPs were significantly associated with HIV-1 infection status or plasma HIV-1 concentrations.This GWAS controlling for HIV-1 exposure did not identify common host genotypes influencing HIV-1 acquisition. Alternative strategies, such as large-scale sequencing to identify low frequency variation, should be considered for identifying novel host genetic predictors of HIV-1 acquisition

    Preschool-Aged Household Contacts as a Risk Factor for Viral Respiratory Infections in Healthcare Personnel

    Get PDF
    BACKGROUND: Viral respiratory infections (VRIs) are common and are occupational risks for healthcare personnel (HCP). VRIs can also be acquired at home and other settings among HCPs. We sought to determine if preschool-aged household contacts are a risk factor for VRIs among HCPs working in outpatient settings. METHODS: We conducted a secondary analysis of data from a cluster randomized trial at 7 medical centers in the United States over 4 influenza seasons from 2011-2012 to 2014-2015. Adult HCPs who routinely came within 6 feet of patients with respiratory infections were included. Participants were tested for respiratory viruses whenever symptomatic and at 2 random times each season when asymptomatic. The exposure of interest was the number of household contacts 0-5 years old (preschool-aged) at the beginning of each HCP-season. The primary outcome was the rate of polymerase chain reaction-detected VRIs, regardless of symptoms. The VRI incidence rate ratio (IRR) was calculated using a mixed-effects Poisson regression model that accounted for clustering at the clinic level. RESULTS: Among the 4476 HCP-seasons, most HCPs were female (85.4%) and between 30 and 49 years of age (54.6%). The overall VRI rate was 2.04 per 100 person-weeks. In the adjusted analysis, HCPs having 1 (IRR, 1.22 [95% confidence interval {CI}, 1.05-1.43]) and ≥2 (IRR, 1.35 [95% CI, 1.09-1.67]) preschool-aged household contacts had higher VRI rates than those with zero preschool-aged household contacts. CONCLUSIONS: Preschool-aged household contacts are a risk factor for developing VRIs among HCPs working in outpatient settings

    Amygdala Atrophy and Its Functional Disconnection with the Cortico-Striatal-Pallidal-Thalamic Circuit in Major Depressive Disorder in Females

    Get PDF
    Background Major depressive disorder (MDD) is approximately twice as common in females than males. Furthermore, female patients with MDD tend to manifest comorbid anxiety. Few studies have explored the potential anatomical and functional brain changes associated with MDD in females. Therefore, the purpose of the present study was to investigate the anatomical and functional changes underlying MDD in females, especially within the context of comorbid anxiety. Methods In this study, we recruited antidepressant-free females with MDD (N = 35) and healthy female controls (HC; N = 23). The severity of depression and anxiety were evaluated by the Hamilton Depression Rating Scale (HAM-D) and the Hamilton Anxiety Rating Scale (HAM-A), respectively. Structural and resting-state functional images were acquired on a Siemens 3.0 Tesla scanner. We compared the structural volumetric differences between patients and HC with voxel-based morphometry (VBM) analyses. Seed-based voxel-wise correlative analyses were used to identify abnormal functional connectivity. Regions with structural deficits showed a significant correlation between gray matter (GM) volume and clinical variables that were selected as seeds. Furthermore, voxel-wise functional connectivity analyses were applied to identify the abnormal connectivity relevant to seed in the MDD group. Results Decreased GM volume in patients was observed in the insula, putamen, amygdala, lingual gyrus, and cerebellum. The right amygdala was selected as a seed to perform connectivity analyses, since its GM volume exhibited a significant correlation with the clinical anxiety scores. We detected regions with disrupted connectivity relevant to seed primarily within the cortico-striatal-pallidal-thalamic circuit. Conclusions Amygdaloid atrophy, as well as decreased functional connectivity between the amygdala and the cortico-striatal-pallidal-thalamic circuit, appears to play a role in female MDD, especially in relation to comorbid anxiety
    corecore