9 research outputs found

    Increased serum kallistatin levels in type 1 diabetes patients with vascular complications

    Get PDF
    BACKGROUND: Kallistatin, a serpin widely produced throughout the body, has vasodilatory, anti-angiogenic, anti-oxidant, and anti-inflammatory effects. Effects of diabetes and its vascular complications on serum kallistatin levels are unknown. METHODS: Serum kallistatin was quantified by ELISA in a cross-sectional study of 116 Type 1 diabetic patients (including 50 with and 66 without complications) and 29 non-diabetic controls, and related to clinical status and measures of oxidative stress and inflammation. RESULTS: Kallistatin levels (mean(SD)) were increased in diabetic vs. control subjects (12.6(4.2) vs. 10.3(2.8) Ī¼g/ml, p = 0.007), and differed between diabetic patients with complications (13.4(4.9) Ī¼g/ml), complication-free patients (12.1(3.7) Ī¼g/ml), and controls; ANOVA, p = 0.007. Levels were higher in diabetic patients with complications vs. controls, p = 0.01, but did not differ between complication-free diabetic patients and controls, p > 0.05. On univariate analyses, in diabetes, kallistatin correlated with renal dysfunction (cystatin C, r = 0.28, p = 0.004; urinary albumin/creatinine, r = 0.34, p = 0.001; serum creatinine, r = 0.23, p = 0.01; serum urea, r = 0.33, p = 0.001; GFR, r = -0.25, p = 0.009), total cholesterol (r = 0.28, p = 0.004); LDL-cholesterol (r = 0.21, p = 0.03); gamma-glutamyltransferase (GGT) (r = 0.27, p = 0.04), and small artery elasticity, r = -0.23, p = 0.02, but not with HbA1c, other lipids, oxidative stress or inflammation. In diabetes, geometric mean (95%CI) kallistatin levels adjusted for covariates, including renal dysfunction, were higher in those with vs. without hypertension (13.6 (12.3-14.9) vs. 11.8 (10.5-13.0) Ī¼g/ml, p = 0.03). Statistically independent determinants of kallistatin levels in diabetes were age, serum urea, total cholesterol, SAE and GGT, adjusted r2 = 0.24, p < 0.00001. CONCLUSIONS: Serum kallistatin levels are increased in Type 1 diabetic patients with microvascular complications and with hypertension, and correlate with renal and vascular dysfunction

    Longitudinal analysis of low-molecular weight fluorophores in type 1 diabetes mellitus

    Get PDF
    Objectives : Circulating low molecular weight (<10 kDa) fluorophores (LMW-F) measured by non-specific fluorescence spectroscopy may detect small advanced glycation end-products (AGEs) not recognized by other assays. This longitudinal study assessed correlates of LMW-F and predictive power of LMW-F levels for vascular health in Type 1 diabetes (T1DM) patients. Methods : Fasting patients with T1DM (n=37) were studied twice at intervals of 12-60 months (meanĀ±SD, 33Ā±15 months). LMW-F levels were also measured once in 112 healthy control subjects. Results : Relative to controls, LMW-F levels were higher in diabetic subjects at initial and final time points (meanĀ±SD), 5.4Ā±1.9 AU/ml and 4.5Ā±1.8 AU/ml respectively vs. 3.8Ā±2.1 AU/ml p=0.0001 and p=0.06). Baseline LMW-F levels predicted subsequent hs-CRP and oxLDL/LDL values. LMW-F levels decreased significantly over time in diabetes (5.4Ā±1.9 vs. 4.5Ā±1.8 AU/ml p=0.02). Rises in LMW-F levels in individual diabetic subjects correlated significantly with worsening renal function (BUN), glycemia (HbA1c) and with vascular dysfunction (systemic vascular resistance). Conclusions : LMW-F levels predict levels of inflammation and oxidation in T1DM. Changes in LMW-F levels in T1DM reflect variations in glycemia and renal function. Biochemical characterization of LMW-F would facilitate understanding of the potential utility of LMW-F as a therapeutic target

    Myocardial production and release of MCP-1 and SDF-1 following myocardial infarction: differences between mice and man

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stem cell homing to the heart is mediated by the release of chemo-attractant cytokines. Stromal derived factor -1 alpha (SDF-1a) and monocyte chemotactic factor 1(MCP-1) are detectable in peripheral blood after myocardial infarction (MI). It remains unknown if they are produced by, and released from, the heart in order to attract stem cells to repair the damaged myocardium.</p> <p>Methods</p> <p>Murine hearts were studied for expression of MCP-1 and SDF-1a at day 3 and day 28 following myocardial infarction to determine whether production is increased following MI. In addition, we studied the coronary artery and coronary sinus (venous) blood from patients with normal coronary arteries, stable coronary artery disease (CAD), unstable angina and MI to determine whether these cytokines are released from the heart into the systemic circulation following MI.</p> <p>Results</p> <p>Both MCP-1 and SDF-1a are constitutively produced and released by the heart. MCP-1 mRNA is upregulated following murine experimental MI, but SDF-1a is suppressed. There is less release of SDF-1a into the systemic circulation in patients with all stages of CAD including MI, mimicking the animal model. However MCP-1 release from the human heart following MI is also suppressed, which is the exact opposite of the animal model.</p> <p>Conclusions</p> <p>SDF-1a and MCP-1 release from the human heart are suppressed following MI. In the case of SDF-1a, the animal model appropriately reflects the human situation. However, for MCP-1 the animal model is the exact opposite of the human condition. Human observational studies like this one are paramount in guiding translation from experimental studies to clinical trials.</p

    Nutritional impacts of a fruit and vegetable subsidy programme for disadvantaged Australian Aboriginal children

    No full text
    Healthy food subsidy programmes have not been widely implemented in high-income countries apart from the USA and the UK. There is, however, interest being expressed in the potential of healthy food subsidies to complement nutrition promotion initiatives and reduce the social disparities in healthy eating. Herein, we describe the impact of a fruit and vegetable (F&V) subsidy programme on the nutritional status of a cohort of disadvantaged Aboriginal children living in rural Australia. A before-and-after study was used to assess the nutritional impact in 174 children whose families received weekly boxes of subsidised F& V organised through three Aboriginal medical services. The nutritional impact was assessed by comparing 24 h dietary recalls and plasma carotenoid and vitamin C levels at baseline and after 12 months. A general linear model was used to assess the changes in biomarker levels and dietary intake, controlled for age, sex, community and baseline levels. Baseline assessment in 149 children showed low F& V consumption. Significant increases (P<0.05) in beta-cryptoxanthin (28.9 nmol/l, 18 %), vitamin C (10.1 mu mol/l, 21 %) and lutein-zeaxanthin (39.3 nmol/l, 11 %) levels were observed at the 12-month follow-up in 115 children, although the self-reported F& V intake was unchanged. The improvements in the levels of biomarkers of F&V intake demonstrated in the present study are consistent with increased F& V intake. Such dietary improvements, if sustained, could reduce non-communicable disease rates. A controlled study of healthy food subsidies, together with an economic analysis, would facilitate a thorough assessment of the costs and benefits of subsidising healthy foods for disadvantaged Aboriginal Australians
    corecore