257 research outputs found

    Effects of plant-soil interactions on grassland carbon dynamics in a changing world

    Get PDF
    Doctor of PhilosophyDivision of BiologyJohn M. BlairPlants are a major conduit through which carbon moves between the atmosphere and the terrestrial biosphere. The organic inputs from plants provide energy to soil microbes which fuels microbial extracellular enzyme production. Soil microbial activity determines the proportion of plant organic inputs that remains stored in soil as organic matter or is mineralized and released back into the atmosphere as carbon dioxide. Plant-soil interactions are, therefore, a critical driver of terrestrial carbon cycling. We live in an era of human-driven change which affects every aspect of ecosystem functioning, so it is critical to understand how different global change factors modulate the plant-soil interactions that influence carbon cycling. In this dissertation I focus on the effects of four specific global change factors on plant-soil interactions in a tallgrass prairie ecosystem: (1) land-use change (i.e., fire suppression and bison removal), (2) woody encroachment, (3) plant invasion, and (4) nutrient enrichment. The overall conclusion from my dissertation research is that all four of these global change factors alter plant-soil interactions in ways that change the storage or turnover of soil carbon. First, long-term fire suppression and/or bison exclusion increases soil C content over time. This change in soil C content is associated with an increase in woody plants in the case of fire suppression or an increase in the dominance of warm-season grasses in the case of bison exclusion under a frequent fire regime. Second, potential C mineralization rates under clonal woody shrubs is higher when the microbial community is decomposing proportionally more shrub-derived organic matter, suggesting that the rate of soil C flux may be dependent on how long the soil has been occupied by woody species. Third, the invasive grass Bromus inermis induces legacy effects on soil microbial community composition and soil organic matter (SOM) decomposition rates. These legacy effects persist for at least six months post-invasive grass removal. Finally, phosphorus fertilization stimulates the rate of SOM decomposition in soil undergoing woody encroachment, but nitrogen fertilization does not. Collectively, these results suggest that the effects of many global change factors on carbon cycling is dependent on spatiotemporal context and historical factors. Additionally, since each of the global change factors I studied affected carbon cycling independently, it will be important to study the combined effects of multiple global change factors acting simultaneously in order to better predict how carbon cycles through terrestrial ecosystems as the world continues to change

    Developing strategic partnerships through a sustainability enrichment week

    Get PDF
    This paper describes the development of a mini-module focused on sustainability and timber engineering as a component of a strategic partnership designed to broaden Transnational Education, increase staff/student mobility, and further develop industry and community links within two universities. Edinburgh Napier University (ENU) draws students from around the world and is internationally recognised for timber construction and wood science. The New Model Institute for Technology and Engineering (NMITE) is a new higher education provider in England pioneering an innovative approach to engineering education integrating business, engineering, the liberal arts, and professional skills. ENU and NMITE leveraged these strengths to develop a strategic partnership that brings together staff, students, industry, and the community for opportunities that create impact beyond traditional learning approaches. This can be seen through the development of a Sustainability Enrichment Week hosted by NMITE’s Centre for Advanced Timber Technology (CATT) and attended by ENU Master’s in Environmental Sustainability students. Students investigated interfaces between buildings, humans, and nature through experiential learning based around the construction of the CATT building, which has been developed as a Living Lab. Each day featured activities aligned to identified learning outcomes and was themed around one of five sustainability competencies: systems thinking, values thinking, strategic thinking, future thinking, and collaboration. The Sustainability Enrichment Week also served as a trial for a short course soon to be offered as part of a Timber Technology, Engineering, and Design programme. This project could be a model for other universities seeking to create similar strategic partnerships and learning experiences

    Formation of functional gap junctions in amniotic fluid-derived stem cells induced by transmembrane co-culture with neonatal rat cardiomyocytes

    Get PDF
    Amniotic fluid-derived stem cells (AFSC) have been reported to differentiate into cardiomyocyte-like cells and form gap junctions when directly mixed and cultured with neonatal rat ventricular myocytes (NRVM). This study investigated whether or not culture of AFSC on the opposite side of a Transwell membrane from NRVM, allowing for contact and communication without confounding factors such as cell fusion, could direct cardiac differentiation and enhance gap junction formation. Results were compared to shared media (Transwell), conditioned media and monoculture media controls. After a 2-week culture period, AFSC did not express cardiac myosin heavy chain or troponin T in any co-culture group. Protein expression of cardiac calsequestrin 2 was up-regulated in direct transmembrane co-cultures and media control cultures compared to the other experimental groups, but all groups were up-regulated compared with undifferentiated AFSC cultures. Gap junction communication, assessed with a scrape-loading dye transfer assay, was significantly increased in direct transmembrane co-cultures compared to all other conditions. Gap junction communication corresponded with increased connexin 43 gene expression and decreased phosphorylation of connexin 43. Our results suggest that direct transmembrane co-culture does not induce cardiomyocyte differentiation of AFSC, though calsequestrin expression is increased. However, direct transmembrane co-culture does enhance connexin-43-mediated gap junction communication between AFSC

    Metal Decorated Multi-Walled Carbon Nanotube/Polyimide Composites with High Dielectric Constants and Low Loss Factors

    Get PDF
    The measurement of observable electromagnetic phenomena in materials and their derived intrinsic electrical material properties are of prime importance in the discovery and development of material systems for electronic and aerospace applications. Nanocomposite materials comprised of metal decorated multi-walled carbon nanotubes (MWCNTs) were prepared by a facile method and characterized. Metal particles such as silver(Ag), platinum(Pt) and palladium(Pd) with diameters ranging from less than 5 to over 50 nanometers were distributed randomly on the MWCNTs. The present study is focused on silver decorated MWCNTs dispersed in a polyimide matrix. The Ag-containing MWCNTs were melt mixed into Ultem(TradeMark) and the mixture extruded as ribbons. The extruded ribbons exhibited a moderate to high degree of MWCNT alignment as determined by HRSEM. These ribbons were then fabricated into test specimens while maintaining MWCNT alignment and subsequently characterized for electrical and electromagnetic properties at 8-12 GHz. The results of the electromagnetic characterization showed that certain sample configurations exhibited a decoupling of the permittivity (epsilon ) and loss factor (epsilon") indicating that these properties could be tailored within certain limits. The decoupling and independent control of these fundamental electrical material parameters offers a new class of materials with potential applications in electronics, microwave engineering and optics

    Insulin-stimulated phosphorylation of endothelial nitric oxide synthase at serine-615 contributes to nitric oxide synthesis

    Get PDF
    Insulin stimulates endothelial NO (nitric oxide) synthesis via PKB (protein kinase B)/Akt-mediated phosphorylation and activation of eNOS (endothelial NO synthase) at Ser-1177. In previous studies, we have demonstrated that stimulation of eNOS phosphorylation at Ser-1177 may be required, yet is not sufficient for insulin-stimulated NO synthesis. We therefore investigated the role of phosphorylation of eNOS at alternative sites to Ser-1177 as candidate parallel mechanisms contributing to insulin-stimulated NO synthesis. Stimulation of human aortic endothelial cells with insulin rapidly stimulated phosphorylation of both Ser-615 and Ser-1177 on eNOS, whereas phosphorylation of Ser-114, Thr-495 and Ser-633 was unaffected. Insulin-stimulated Ser-615 phosphorylation was abrogated by incubation with the PI3K (phosphoinositide 3-kinase) inhibitor wortmannin, infection with adenoviruses expressing a dominant-negative mutant PKB/Akt or pre-incubation with TNFα (tumour necrosis factor α), but was unaffected by high culture glucose concentrations. Mutation of Ser-615 to alanine reduced insulin-stimulated NO synthesis, whereas mutation of Ser-615 to aspartic acid increased NO production by NOS in which Ser-1177 had been mutated to an aspartic acid residue. We propose that the rapid PKB-mediated stimulation of phosphorylation of Ser-615 contributes to insulin-stimulated NO synthesis

    Innovating healthcare delivery to address noncommunicable diseases in low-income settings: the example of hypertension.

    Get PDF
    London Dialogue event, The Hospital Club, 24 Endell St, London, WC2H 9HQ, London, UK, 1 December 2015 Hypertension is a global health issue causing almost 10 million deaths annually, with a disproportionate number occurring in low- and middle-income countries. The condition can be managed effectively, but there is a need for innovation in healthcare delivery to alleviate its burden. This paper presents a number of innovative delivery models from a number of different countries, including Kenya, Ghana, Barbados and India. These models were presented at the London Dialogue event, which was cohosted by the Novartis Foundation and the London School of Hygiene & Tropical Medicine Centre for Global Noncommunicable Diseases on 1 December 2015. It is argued that these models are applicable not only to hypertension, but provide valuable lessons to address other noncommunicable diseases

    An investigation of the processes controlling ozone in the upper stratosphere

    Get PDF
    Photolysis of vibrationally excited oxygen produced by ultraviolet photolysis of ozone in the upper stratosphere is incorporated into the Lawrence Livermore National Laboratory 2-D zonally averaged chemical-radiative-transport model of the troposphere and stratosphere. The importance of this potential contributor of odd oxygen to the concentration of ozone is evaluated based upon recent information on vibrational distributions of excited oxygen and upon preliminary studies of energy transfer from the excited oxygen. When the energy transfer rate constants of previous work are assumed, increases in model ozone concentrations of up to 40 percent in the upper stratosphere are found, and the ozone concentrations of the model agree with measurements, including data from the Upper Atmosphere Research Satellite. However, the increase is about 0.4 percent when the larger energy transfer rate constants suggested by more recent experimental work are applied in the model. This indicates the importance of obtaining detailed information on vibrationally excited oxygen properties to evaluation of this process for stratospheric modelling

    Antenna with Dielectric Having Geometric Patterns

    Get PDF
    An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern

    Challenges and Opportunities to Scale Up Cardiovascular Disease Secondary Prevention in Latin America and the Caribbean.

    Get PDF
    In the Americas, CVD represents about 38% of noncommunicable disease deaths. A roadmap for secondary prevention in Latin America and the Caribbean is warranted. Simple and practical guidelines should be developed and implemented. PAHO proposes a realistic and efficient prevention coalition plan in Latin America to fight CVD. The inclusion of the health system through health workers is highly recommended for a successful nationwide preventive program

    Examining the safety of respiratory and intravenous inoculation of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus in a mouse model

    Full text link
    Bdellovibrio spp. and Micavibrio spp. are Gram-negative predators that feed on other Gram-negative bacteria, making predatory bacteria potential alternatives to antibiotics for treating multi-drug resistant infections. While the ability of predatory bacteria to control bacterial infections in vitro is well documented, the in vivo effect of predators on a living host has yet to be extensively examined. In this study, respiratory and intravenous inoculations were used to determine the effects of predatory bacteria in mice. We found no reduction in mouse viability after intranasal or intravenous inoculation of B. bacteriovorus 109J, HD100 or M. aeruginosavorus. Introducing predators into the respiratory tract of mice provoked a modest inflammatory response at 1 hour post-exposure, but was not sustained at 24 hours, as measured by RT-qPCR and ELISA. Intravenous injection caused an increase of IL-6 in the kidney and spleen, TNF in the liver and CXCL-1/KC in the blood at 3 hours post-exposure, returning to baseline levels by 18 hours. Histological analysis of tissues showed no pathological changes due to predatory bacteria. Furthermore, qPCR detected predators were cleared from the host quickly and efficiently. This work addresses some of the safety concerns regarding the potential use of predatory bacteria as a live antibiotic
    corecore