295 research outputs found

    The Canis Major Dwarf Galaxy

    Full text link
    Recent observational evidence suggests that the Sagittarius dwarf galaxy represents the only major ongoing accretion event in the Galactic halo, accounting for the majority of stellar debris identified there. This paper summarizes the recent discovery of another potential Milky Way accretion event, the Canis Major dwarf galaxy. This dwarf satellite galaxy is found to lie just below the Galactic plane and appears to be on an equatorial orbit. Unlike Sagittarius, which is contributing to the Galactic halo, the location and eventual demise of Canis Major suggests that it represents a building block of the thick disk.Comment: Refereed contribution to "Structure & Dynamics in the Local Universe, a workshop to honour Brent Tully's 60th birthday", Nov 2003. 4 pages + 2 figures (quality reduced due to size restrictions). To appear in PAS

    On The Nature of ultra-faint Dwarf Galaxy Candidates II: The case of Cetus II

    Full text link
    We obtained deep Gemini GMOS-S g,rg,r photometry of the ultra-faint dwarf galaxy candidate Cetus II with the aim of providing stronger constraints on its size, luminosity and stellar population. Cetus II is an important object in the size-luminosity plane as it occupies the transition zone between dwarf galaxies and star clusters. All known objects smaller than Cetus II (rh20r_h \sim 20 pc) are reported to be star clusters, while most larger objects are likely dwarf galaxies. We found a prominent excess of main-sequence stars in the colour-magnitude diagram of Cetus II, best described by a single stellar population with an age of 11.2 Gyr, metallicity of [Fe/H] = 1.28-1.28 dex, an [α\alpha/Fe] = 0.0 dex at a heliocentric distance of 26.3±\pm1.2 kpc. As well as being spatially located within the Sagittarius dwarf tidal stream, these properties are well matched to the Sagittarius galaxy's Population B stars. Interestingly, like our recent findings on the ultra-faint dwarf galaxy candidate Tucana V, the stellar field in the direction of Cetus II shows no evidence of a concentrated overdensity despite tracing the main sequence for over six magnitudes. These results strongly support the picture that Cetus II is not an ultra-faint stellar system in the Milky Way halo, but made up of stars from the Sagittarius tidal stream.Comment: 12 pages, 12 figures, Accepted for publication in Ap

    Correcting the influence of an asymmetric line spread function in 2-degree Field spectrograph data

    Full text link
    We investigate the role of asymmetries in the line spread function of the 2-degree field spectrograph and the variations in these asymmetries with the CCD, the plate, the time of observation and the fibre. A data-reduction pipeline is developed that takes these deformations into account for the calibration and cross-correlation of the spectra. We show that, using the emission lines of calibration lamp observations, we can fit the line spread function with the sum of two Gaussian functions representing the theoretical signal and a perturbation of the system. This model is then used to calibrate the spectra and generate templates by downgrading high resolution spectra. Thus, we can cross-correlate the observed spectra with templates degraded in the same way. Our reduction pipeline is tested on real observations and provides a significant improvement in the accuracy of the radial velocities obtained. In particular, the systematic errors that were as high as ~20 km/s when applying the AAO reduction package 2dfDR are now reduced to ~5 km/s. Even though the 2-degree Field spectrograph is to be decommissioned at the end of 2005, the analysis of archival data and previous studies could be improved by the reduction procedure we propose here.Comment: 9 pages, 9 figures, accepted to PASA, minor change

    Gemini and Lowell observations of 67P/Churyumov−Gerasimenko during the <i>Rosetta</i> mission

    Get PDF
    We present observations of comet 67P/Churyumov−Gerasimenko acquired in support of the Rosetta mission. We obtained usable data on 68 nights from 2014 September until 2016 May, with data acquired regularly whenever the comet was observable. We collected an extensive set of near-IR J, H and Ks data throughout the apparition plus visible-light images in g', r', i' and z' when the comet was fainter. We also obtained broad-band R and narrow-band CN filter observations when the comet was brightest using telescopes at Lowell Observatory. The appearance was dominated by a central condensation and the tail until 2015 June. From 2015 August onwards, there were clear asymmetries in the coma, which enhancements revealed to be due to the presence of up to three features (i.e. jets). The features were similar in all broad-band filters; CN images did not show these features but were instead broadly enhanced in the southeastern hemisphere. Modelling using the parameters from Vincent et al. replicated the dust morphology reasonably well, indicating that the pole orientation and locations of active areas have been relatively unchanged over at least the last three apparitions. The dust production, as measured by A(0°)fρ peaked ∼30 d after perihelion and was consistent with predictions from previous apparitions. A(0°)fρ as a function of heliocentric distance was well fitted by a power law with slope −4.2 from 35 to 120 d post-perihelion. We detected photometric evidence of apparent outbursts on 2015 August 22 and 2015 September 19, although neither was discernible morphologically in this data set
    corecore