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1 INTRODUCTION

ABSTRACT

We present observations of comet 67P/Churyumov—Gerasimenko acquired in support of the
Rosetta mission. We obtained usable data on 68 nights from 2014 September until 2016 May,
with data acquired regularly whenever the comet was observable. We collected an extensive
set of near-IR J, H and Ks data throughout the apparition plus visible-light images in g, 7/,
i’ and 7 when the comet was fainter. We also obtained broad-band R and narrow-band CN
filter observations when the comet was brightest using telescopes at Lowell Observatory. The
appearance was dominated by a central condensation and the tail until 2015 June. From 2015
August onwards, there were clear asymmetries in the coma, which enhancements revealed
to be due to the presence of up to three features (i.e. jets). The features were similar in all
broad-band filters; CN images did not show these features but were instead broadly enhanced
in the southeastern hemisphere. Modelling using the parameters from Vincent et al. replicated
the dust morphology reasonably well, indicating that the pole orientation and locations of
active areas have been relatively unchanged over at least the last three apparitions. The dust
production, as measured by A(0°)fp peaked ~30d after perihelion and was consistent with
predictions from previous apparitions. A(0°)fp as a function of heliocentric distance was
well fitted by a power law with slope —4.2 from 35 to 120d post-perihelion. We detected
photometric evidence of apparent outbursts on 2015 August 22 and 2015 September 19,
although neither was discernible morphologically in this data set.

Key words: comets: individual: 67P/Churyumov—Gerasimenko.

Earth over an extended time period. The mission’s value is ampli-
fied by fully incorporating the Earth-based observations because

ESA’s Rosetta mission to comet 67P/Churyumov—Gerasimenko
(henceforth 67P) officially reached the comet on 2014 August 6 at
a heliocentric distance (ry) of 3.60 au prior to perihelion (Taylor
et al. 2015). It followed the comet through perihelion (2015 Au-
gust 13 at ry = 1.24 au) and continued orbiting until the spacecraft
was intentionally landed on the nucleus surface on 2016 Septem-
ber 30 at ry = 3.83 au. This 2+ yr rendezvous created the first
opportunity to study a comet simultaneously in situ and from the

* E-mail: mmk8a@astro.umd.edu

© 2017 The Authors

the lessons learned from 67P during Rosetta can be extended to far
more comets than will be visited by spacecraft in the foreseeable
future.

Due to Rosetta’s location within 67P’s coma, it probed vastly
different scales (generally <10? km) than Earth-based observations
(103-10° km), and a full picture of the comet’s behaviour during
the apparition could be gained only by supplementing the spacecraft
data with Earth-based observations. Throughout most of the appari-
tion, 67P was difficult to observe from Earth, either because it was
distant and faint or because it was near solar conjunction and there-
fore poorly placed for observing. Its observability from any one
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location was also limited because 67P was primarily a Southern
hemisphere object prior to perihelion and a Northern hemisphere
object post-perihelion.

We undertook a campaign to monitor 67P’s dust coma evolu-
tion throughout the Rosetta encounter at visible-light and near-IR
wavelengths. Such a long-duration campaign necessitated a large
telescope for most of the observations. Gemini Observatory proved
ideally suited for these observations: it has twin 8-m southern and
northern facilities that are equipped with similar instrumentation,
allowing us to acquire a nearly homogeneous data set throughout
the encounter. Furthermore, Gemini’s queued scheduling permitted
regular observations, even when 67P was at low solar elongations
and available only during twilight. Near perihelion, when 67P was
brightest and accessible to smaller telescopes, we acquired visible-
light images at Lowell Observatory rather than with Gemini.

In an effort to obtain data on an approximately regular cadence,
observations were acquired on many nights during poor conditions,
either because of weather and atmospheric conditions, or because
the comet was observable only during twilight at high airmass. We
also observed more intensively around key points in the Rosetta
mission timeline such as the Philae landing (2014 November 12)
and perihelion, both of which occurred during poor observing cir-
cumstances from Earth. Thus, our observations focused primarily
on imaging to emphasize monitoring the dust coma morphology,
which does not require cloud-free photometric conditions. Most
observations were short, snapshot images of the comet; longer du-
ration near-IR spectroscopy was also obtained on three nights when
67P was brightest but they are beyond the scope of the current
analysis. In total, we collected usable data on 68 nights from 2014
September through 2016 May.

Preliminary results from this observing campaign have already
been published in synopses of 67P’s distant activity as observed
with large telescopes (Snodgrass et al. 2016) and of the world-
wide ground-based observation campaign (Snodgrass et al. 2017).
Here, we present comprehensive analysis of our observations. In
Section 2, we describe the observations and data reductions. We
present our results and analysis in Section 3, focusing on dust coma
morphology since our data set is capable of demonstrating 67P’s
long-term morphological behaviour throughout the Rosetta mission,
but also considering the photometric evolution. Finally, in Section 4
we discuss how these observations compare to Earth-based observa-
tions from previous apparitions and consider connections between
remote sensing and in situ studies conducted by Rosetta.

2 OBSERVATIONS AND REDUCTIONS

The imaging observations are summarized in Table 1. Each of the
various telescope and instrument combinations is discussed in its
own subsection, below. Owing to 67P’s challenging viewing geom-
etry during much of the apparition, observations were frequently
acquired at airmasses > 1.5, during twilight, and at less than opti-
mal atmospheric conditions in order to ensure frequent monitoring
of the comet. None the less, typical seeing was <1.0arcsec for
all Gemini and Discovery Channel Telescope (DCT) observations.
Seeing at the Lowell 31-in site is ~1 arcsec, but the effective seeing
due to dome effects, tracking wobbles, etc. was typically 3-5 arcsec.

2.1 FLAMINGOS-2

FLAMINGOS-2 (Eikenberry et al. 2004) is a near-IR imager and
multi-object spectrograph on Gemini-South. We used it during
the 2014B and 2015A semesters in imaging mode where it has a

6.1 arcmin diameter circular field of view and a Hawaii-II (HgCdTe)
chip with 2048 x 2048 pixels, resulting in 0.18 arcsec pixels. We
used J, H and K filters and guided on the comet’s ephemeris with-
out using adaptive optics (AO). All observations were acquired in
queue mode. We followed standard near-IR observing practices to
build deeper integrations by collecting multiple short observations
with dithers between them, but did not co-add on chip before read-
ing out. We used the bright read mode to reduce overhead since
the extra read noise was dwarfed by the high sky background. The
number of exposures and exposure times varied with the comet’s
brightness as well as with the sky background, but a minimum of
five exposures were acquired with a particular filter on a given night.
We planned to acquire all three filters on all nights, but occasionally
the set was truncated by the telescope operator due to a change in
observing conditions, rising sky background or technical problems.
Calibration data (dome flats, darks, short darks) were acquired as
part of Gemini’s routine observations. The data were reduced in
IRAF using the gemini/f2 package and following reduction scripts
provided by Gemini.! Sky frames were created from the dithered
comet frames since the comet did not fill a significant portion of
the field of view. Although the dithers were larger than the apparent
extent of the coma, some low-level coma was likely still present in
the sky image, resulting in slight over removal of the background.
This would have impacted photometric measurements (none are
presented here), but had minimal effect on our morphological stud-
ies as we confirmed that there was no evidence of residual structure
in the sky frames. The sky frames were subtracted from the indi-
vidual images and all images in a given filter on a night were then
co-added by centroiding on the comet to produce a single master
image.

2.2 NIRI

When 67P became a Northern hemisphere target (semesters 2015B
and 2016A), we used the Near InfraRed Imager and spectro-
graph (NIRI; Hodapp et al. 2003) on Gemini-North in imaging
mode and with queued scheduling. We used NIRI at f/6 where its
1024 x 1024 pixels cover a square field of view 120 x 120 arcsec
on a side, resulting in 0.117 arcsec pixels. Our observation strat-
egy mimicked the FLAMINGOS-2 observations just described with
notable differences being that we used ‘medium background’ read
mode that is recommended for J, H, Ks broad-band imaging and,
when possible, used the same exposure time in all filters to minimize
the ‘first frame issue’ that occurs whenever the detector configu-
ration changes (read mode, exposure time, etc.) and causes poor
background subtraction in the subsequent image. The data were
reduced in IRAF using a combination of the gemini/niri package fol-
lowing reduction scripts provided by Gemini’> and additional RAF
and PYTHON scripts provided by A. Stephens (Gemini).

2.3 GMOS-South and -North

We observed with both Gemini Multi-Object Spectrographs
(GMOS; Hook et al. 2004) in imaging mode, using GMOS-South
(GMOS-S) in semesters 2014B and 2015A and GMOS-North
(GMOS-N) in semester 2016A. Each GMOS has a square field
of view 5.5 arcmin on a side. GMOS-S uses the new, red-sensitive
Hamamatsu detector (Gimeno et al. 2016) with 6266 x 4176 pixels

!http://www.gemini.edu/sciops/data/IRAFdoc/f2_imaging_example.cl
2 http://www.gemini.edu/sciops/data/IR AFdoc/niri_imaging_example.cl
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and an image scale of 0.08 arcsec pixel !, while GMOS-N uses
the e2v DD chip having 6144 x 4608 pixels and an image scale of
0.0728 arcsec pixel!. All observations were binned 2 x 2 resulting
in 0.160 arcsec (GMOS-S) and 0.1456 arcsec (GMOS-N) pixels.
Each detector has three chips with gaps between them, but as the
position of 67P was well known and it was not highly extended
when we observed it, the comet was always located on the middle
chip and did not extend significantly into the chip gaps. Images
were guided on the comet’s ephemeris without using AO.

We had two types of observation with GMOS: short g/, 7/, i
and 7’ colour sequences and deeper ' sequences for morphology.
All images used the slow read mode, and were dithered whenever
multiple images were acquired. The number of exposures varied
with the comet’s brightness; 1-3 images were acquired per filter for
colour sequences, while the deeper ' sequences consisted of 5-18
images. The data were reduced using the gemini/gmos package and
following the reduction scripts provided by Gemini® to remove bias
and perform flat-fielding. Due to the snapshot nature of the colour
sequences, there were insufficient 7' images to remove fringing.
However, fringing had a negligible effect on our photometry because
it is small for GMOS-S (~1 per cent of the background*) when the
comet was fainter, while the somewhat larger GMOS-N fringing
(~2.5 per cent of the background®) was offset by the comet’s much
brighter appearance. The data were photometrically calibrated using
the Gemini zero-points and extinction coefficients; for GMOS-S
calibrations where a colour term is also needed, we assumed solar
colour. For GMOS data taken at low Galactic latitude in 2014, we
also employed difference image analysis techniques, implemented
in DL, to remove background stars (Bramich 2008).

/

2.4 Discovery Channel Telescope

We utilized the Large Monolithic Imager (LMI; Massey et al. 2013)
on Lowell Observatory’s 4.3-m DCT on four nights. LMI has an
e2v CCD with a square field of view 12.3 arcmin on a side. It
contains 6256 x 6160 pixels that were binned on chip 2 x 2, yield-
ing 0.24 arcsec pixels. We used a broad-band Cousins R-band filter
and a comet HB narrow-band CN filter (Farnham, Schleicher &
A’Hearn 2000, ‘HB’ is the formal name of the filter set). The comet
was observed near an airmass of 1.9 and during astronomical twi-
light in 2015 September, but near an airmass of 1.3 and during dark
time in 2015 December. The telescope was guided on the comet’s
ephemeris. Images were bias- and flat-field-corrected in 1pL follow-
ing standard procedures (e.g. Knight & Schleicher 2015). R-band
images were absolutely calibrated using field stars in the UCAC4
catalogue (Zacharias et al. 2013). Results were close to the absolute
calibrations performed using Landolt (2009) standard stars on two
of the nights. CN absolute calibrations were not performed as the
appropriate standard stars were not observed since the comet obser-
vations were acquired primarily to assess gas coma morphology.

2.5 31-in

We obtained useful data on 36 nights using Lowell Observatory’s
31-in (0.8-m) telescope in robotic mode. Although we refer to it as
the ‘31-in’ throughout this paper because that is its formal name,

3 http://www.gemini.edu/sciops/data/IR AFdoc/gmos_imaging_example.cl
4 http://www.gemini.edu/sciops/instruments/gmos/imaging/fringing/
gmossouth

3 https://www.gemini.edu/node/10648
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we note that the primary is stopped down to 29-in and the telescope
is therefore effectively 0.7-m. The 31-in has an e2v CCD42-40 chip
with 2138 x 2052 pixels and a square field of view 15.7 arcmin on
a side, yielding 0.456 arcsec pixels. We used a broad-band Cousins
R-band filter and the HB narrow-band CN filter, and tracked on the
comet’s ephemeris. As shown in Table 1, conditions varied from
night to night but were often non-photometric. Effective seeing
was typically 3-5 arcsec, and many images were acquired during
astronomical twilight. Images were bias- and flat-field-corrected in
ipL following standard procedures (e.g. Knight & Schleicher 2015).
We photometrically calibrated the data each night using UCAC4
catalogue field stars (Zacharias et al. 2013) and confirmed that
the results were close to the typical calibration coefficients used
for this telescope, demonstrating that cirrus was minimal (usually
<0.1 mag, always <0.35 mag) on the nights used for this analysis.

3 RESULTS AND ANALYSIS

3.1 Morphology assessment

3.1.1 Dust morphology

As previously discussed, our primary goal was assessment of coma
morphology. To improve signal-to-noise in the coma, all images
in the same filter on a given night were centroided and combined
to create a single deeper exposure for the night. The vast majority
of our images were acquired in bandpasses typically dominated by
dust: R, ¥, i', 7, J, H and Ks. Spectroscopy (e.g. fig. 1 of Feldman,
Cochran & Combi 2004) reveals that in most comets the g filter
has some gas contamination (C3 and C,); however, both appear to
be relatively low in 67P (e.g. Schleicher 2006; Opitom et al. 2017).
Furthermore, as shown below, the morphology in this filter suggests
gas contamination is minimal. Unsurprisingly, the bulk morphology
looked similar in all of these filters at a given epoch. As shown in
Fig. 1, the general morphology evolved over the apparition. 67P’s
initial appearance in late 2014 was faint with a central condensation
and a weak tail, and it changed little through our last observations
before solar conjunction in 2015 June. From 2015 August through
2016 January, when 67P was closest to Earth and brightest, the
extended coma was obvious and asymmetries in the inner coma
were easily discernible in unenhanced images. After 2016 January,
the coma weakened, asymmetries became less obvious and the dust
trail became more pronounced. Throughout our observations, the
nucleus was not detectable as it was significantly fainter than the
inner coma. Adopting the nucleus parameters used in Snodgrass
et al. (2013), the nucleus was ~2 mag fainter than the coma in a
10* km radius aperture during our earliest and latest observations,
and more than 6 mag fainter near perihelion.

In order to investigate the faint, underlying structures in the inner
coma, each nightly stacked image in a given filter was enhanced to
remove the bulk coma brightness. We applied a variety of image
enhancement techniques, as different methods are better at reveal-
ing different kinds of features (e.g. Schleicher & Farnham 2004;
Samarasinha & Larson 2014). In general, we found removal (divi-
sion or subtraction) of an azimuthal median profile or a p~! profile
(where p is the projected distance from the nucleus) to be most
effective. Before accepting a particular feature as real, we verified
that it was discernible in the unenhanced images and, whenever
signal-to-noise permitted, in the individual, unstacked images as
well. Fig. 2 shows images enhanced by subtracting an azimuthal
median profile at representative times throughout the orbit. With
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Figure 1. Evolution of 67P’s morphology from 2014 September through 2016 May. The date (YYMMDD format), filter and a scale bar 30 000 km across are
given on each panel. All images are centred on the comet. North is up and east is to the left. The direction to the Sun is indicated by the arrow on each panel.

The colour scale varies from image to image, but yellow is bright and blue/black is faint. Trailed stars are visible in some frames.

this enhancement, the fainter features seen in the unenhanced im-
ages become prominent.

The enhancements did not reveal any obvious features other than
the dust tail in the 2014 data. However, we note that the large
geocentric distance and overall faintness of the comet would limit
the angular extent of any features and thus make their detection
challenging. This is particularly important for our preferred en-
hancement techniques, where features within a few point spread
functions (PSFs) of the centre are highly sensitive to centroiding
effects and should be interpreted with caution. A faint, sunward
feature was first detected in 2015 June, when it curved towards the
north, presumably due to the effects of radiation pressure. When we
next observed 67P in 2015 August, a distinct, straight sunward fea-
ture was seen at a position angle (P.A., measured counterclockwise
from north through east) of ~120°. From 2015 September through
December, the sunward feature became wider and appeared to con-
sist of two overlapping smaller features. From late December on-
wards, these two features separated entirely, eventually having P.A.s
~90° apart, with the more southern feature essentially orthogonal
to the sunward direction. From 2015 August through the end of

our observations, the features extend projected distances at least
~10* km from the nucleus. An additional, much fainter feature can
be discerned at P.A.~80° in 2016 February—March, and possibly
from 2015 December through 2016 April.

We did not detect variability in the morphology during a night,
but this is unsurprising given that all observations were snapshots
lasting an hour or less. Assuming that a feature would need to have
moved by at least a few times the seeing disc to be detectable, e.g.
at least 2-3 arcsec, and that our typical observations were acquired
at geocentric distances (A) of 1.5-2.0 au, the dust would have
needed to move a projected distance of 2000—4000 km in an hour
or less. This would require projected dust velocities on the order
of 1kms~!, which are unrealistic given the velocities reported by
previous authors (<35 m s~!; e.g. Tozzi et al. 2011).

We also did not detect significant changes in morphology from
night to night. This is long relative to the nucleus’ rotation period
(12.4 h; Sierks et al. 2015). If the coma morphology was changing
appreciably with rotation, we should have seen evidence for this
from night to night, even allowing for the relative commensurability
of rotational phase over consecutive nights since observations a few
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Figure 2. Evolution of coma features from 2014 September through 2016 May for the same images as shown in Fig. 1. All images have been enhanced by
subtraction of an azimuthal median profile, are centred on the comet, and are 30 000 km across at the comet. Features within a few PSFs of the centre should
be interpreted with caution due to the enhancement process. Low signal-to-noise images have been smoothed with a boxcar smooth. All other details are as

given in Fig. 1.

days apart would differ by about a quarter of a rotation. Instead, the
only significant variations in appearance occurred gradually during
the apparition. This slow evolution of appearance is consistent with
activity that is responding to the changing seasonal illumination of
the nucleus rather than to diurnal variations in local illumination. A
similar conclusion has been reached by other authors who imaged
these features (e.g. Vincent et al. 2013; Boehnhardt et al. 2016;
Rosenbush et al. 2017; Zaprudin et al. 2017) and we will revisit this
in Section 4.

At speeds of a few tens of metres per second, the time for dust
grains to completely traverse a feature will be of the order of a
few days. Thus, the features contain material ejected over multiple
rotation periods, making it challenging to detect rotational variation.
If the grains have significant velocity dispersion, then a potential
rotational signal would be further suppressed, and even considerably
better image resolution might not reveal variability.

We acquired images in seven bandpasses (g, ¥, 7', 7, J, H and Ks)
on one night, 2016 February 16. Fig. 3 shows enhanced versions
of each. The same features are seen with approximately the same
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extent and relative brightness (~30 per cent of the coma brightness
at that projected distance) in all seven panels. This supports our as-
sumption that there was not substantial gas contamination in g’, and
we interpret the similarity as indicating that there are not significant
differences in the particles that dominate the scattering cross-section
in each bandpass. Ratios of unenhanced images (e.g. g’ /7, J/r') did
not show any obvious spatial differences that might be explained
by grain properties. However, we note that such analyses are made
challenging by the presence of faint stars near the nucleus in all
visible-light frames and the very bright star near the nucleus in the
J and H frames.

3.1.2 Gas morphology

Our data collection was primarily focused on filters dominated by
dust, but images were also acquired with the HB narrow-band CN
filter (Farnham et al. 2000) on 22 nights when 67P was brightest.
The CN bandpass contains both emission from the bright CN band-
head at 3883 A and reflected solar continuum from the dust. Ideally,

MNRAS 469, S661-S674 (2017)
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Figure 3. Multifilter coma morphology on 2016 February 16 showing similar morphology in all filters. The filter is given on each image. All other image

details are the same as in Fig. 2.

40,000 km

CN enhanced

R enhanced

Figure 4. Comparison of dust (R-band, left-hand column) and gas (CN,
right-hand column) morphology on 2015 September 23. Unenhanced images
are on the top row, and images enhanced by subtraction of an azimuthal
median profile are on the bottom row. The R images show the tail to the
north-west (P.A.~285°) and two shorter, sunward-facing features; these
features are absent in the CN images, which show a bulk enhancement of
brightness in the sunward hemisphere, but no distinct, small-scale features.
All images are centred on the nucleus, have north up and east to the left, and
have the same scale. Stars are seen trailed roughly east—west.

we would remove the underlying solar continuum to produce a pure
CN gas image; however, this was not possible on most nights due to
observing in non-photometric conditions. Fortunately, comparison
of both the raw and enhanced images (Fig. 4) reveals that the coma
morphology is very different between the R and CN filters, indicat-
ing that dust contamination is not significant — even the prominent

dust tail is not seen appreciably in CN images. Thus, we can safely
assess the CN morphology without needing to decontaminate the
images.

Fig. 4 shows R and CN images enhanced by subtraction of an
azimuthal median profile on 2015 September 23, the highest signal-
to-noise CN image we acquired. R exhibits a similar morphology to
contemporaneous near-IR images shown in Fig. 2, with two features
in the sunward direction at P.A.s ~130° and 175° and the dust tail
to the west in the antisolar direction. The CN image does not show
any of these features. Instead, it is visibly asymmetric even in the
raw images. Enhancement reveals a hemispheric increase in bright-
ness to the southeast with the brightest region near P.A.~165° and
brightness decreasing roughly symmetrically at larger and smaller
P.A.s. Although high signal-to-noise CN images were only obtained
on three nights with DCT, the much lower signal-to-noise CN im-
ages from the 31-in also show this hemispheric enhancement to the
south. The P.A. of the peak brightness is approximately coincident
with the brightest dust feature, suggesting that the CN originates
from the same source region(s) as the dust.

Owing to 67P’s orientation, the projection to the south in our im-
ages corresponds to the region above the nucleus’ Southern hemi-
sphere as defined by Rosetta. Thus, our observations suggest that
CN originates from the nucleus’ Southern hemisphere, in agreement
with the TRAPPIST results that show a strong seasonal dependence
when the nucleus’ Southern hemisphere is illuminated (Opitom
et al. 2017). This is unlike the behaviour of water and dust, which
generally follow the heliocentric distance (e.g. Fougere et al. 2016;
Hansen et al. 2016), and may suggest the parent of CN is not tied to
the water production. ROSINA measurements reported by Luspay-
Kuti et al. (2015) showed that HCN generally follows the water
production, so if CN is not coupled to the water then HCN may not
be its primary parent. However, Luspay-Kuti et al. (2015) looked
at rotational time-scales; the long-term evolution has not yet been
demonstrated.

We do not see evidence of smaller structures (e.g. jets) in the CN
coma in any of our data, nor do we see significant variations from
night to night. CN coma structures were first discovered in 1P/Halley
(A’Hearn et al. 1986) and are frequently seen in other comets. They
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are commonly used as a means to constrain the rotation period,
pole orientation, and/or location and number of active regions on
the surface (e.g. Farnham et al. 2007; Knight & Schleicher 2011).
The lack of obvious structures in 67P’s CN coma as well as the
hemispheric nature may simply be due to the low signal to noise.
These structures are typically <10 per cent brighter than the ambient
coma at the same projected distance, and 67P was fainter than most
comets for which we have detected such structures. Furthermore, A
was reasonably large (>1.7 au), limiting the angular extent of any
structures.

If the lack of CN coma structures is real, it may suggest that
the activity producing the parent(s) of CN is widespread and not
confined to a particular, isolated active region. This is consistent
with the overall picture of activity thus far revealed by Rosetta,
where much of the sunlit surface seems to be active at low levels
(e.g. Fougere et al. 2016; Hansen et al. 2016). Alternatively, the
hemispheric distribution of CN could be due to its originating from
grains in the coma rather than from one or more parent species
leaving the nucleus directly as a gas. If significant amounts of CN
comes from grains in the coma (a so-called ‘extended source’), this
would naturally suppress the rotational variation that is typically a
hallmark of CN in comet comae. The excess velocity from vapor-
ization of grains would be in random directions and would greatly
exceed the velocity of the grains from which the CN originated, and
the grains themselves would likely have lost the rotational signa-
ture due to their presumed velocity dispersion. Furthermore, grains
in the coma would be illuminated equally well in all parts of the
coma. Thus, CN could originate from anywhere in the coma, and
the relative enhancement in the sunward hemisphere would simply
be due to there being more fresh grains in that direction (as dust
grains in the tail would be older and more likely to have already lost
their CN).

3.2 Activity

A common method for assessing cometary activity is via the Afp
parameter (A’Hearn et al. 1984), which is often used as a proxy for
dust production. Here, A is the phase angle (¢) dependent albedo
of dust in the aperture, fis the filling factor of the dust and p is the
projected aperture distance at the comet. We measured A(6)fp for
all visible-light data in a p = 10* km radius aperture except for the
2014 Gemini data where the fields were too crowded, necessitating
the use of a p = 5 x 10 km aperture. An aperture of p = 10* km
is common for Afp measurements, allowing us to compare our data
with those of other observers. Only images without obvious stars
in the aperture were used and data were adjusted to 0° phase angle
using the Halley—Marcus dust phase function® (Schleicher, Millis
& Birch 1998; Marcus 2007), yielding A(0°)fp. The phase function
does not have an analytical fit, but the interpolated correction for
each night is given in column 3 of Table 2.

A(0°)fp is plotted as a function of time relative to perihelion
in Fig. 5 and given along with apparent magnitudes in the same
apertures in Table 2. Uncertainties are not plotted as they are gen-
erally smaller than the points, but the magnitude uncertainties are
given in the table and can be propagated into A(0°)fp uncertain-
ties as oasp x = [1 — 107040 ]x A(0°) f o, x, where X is the
filter under consideration and the =+ in the exponent provides lower
and upper uncertainties. Magnitude uncertainties were calculated
as the standard deviation of all the comet’s individual magnitude

© http://asteroid.lowell.edu/comet/dustphase.html
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measurements on a night added in quadrature to the uncertainty
in the absolute calibrations. The absolute calibration uncertainty
is only known for the Lowell data that were calibrated from field
stars; default extinction correction values were used for the Gemini
data and are estimated to be accurate to ~5 per cent,’ but they are
not included in the magnitude uncertainty. When only one image
was acquired no uncertainty is given, but it is likely 0.05-0.10 mag.
We excluded a handful of nights in which conditions were clearly
non-photometric.

Throughout the apparition, the apparent R-band magnitudes agree
well with the predictions from Snodgrass et al. (2013), indicating
that the overall activity remained relatively constant from 2009 to
2015. A(0°)fp reaches a peak at about +30d relative to perihe-
lion (AT) and then decreases smoothly. The timing of the peak is
consistent with other ground-based data sets (e.g. Weiler, Rauer &
Helbert 2004; Schleicher 2006; Boehnhardt et al. 2016; Opitom
et al. 2017) that generally found a maximum in activity about one
month post-perihelion. Fig. 5 also plots the water production as
measured by instruments on Rosetta (e.g. Hansen et al. 2016).
A(0°)fp follows this curve well except for the interval from O to
+30d when Hansen et al. (2016) did not attempt to account for
the shift in peak water production that they reported occurs at 18—
22 d post-perihelion. The agreement between these curves and our
data support the conclusion that the dust production is tied to water
production (e.g. Hansen et al. 2016).

At large ry, A(0°)fp is consistently higher than the water pro-
duction curve, likely due to several factors. First, larger and/or
slower moving grains that were released earlier remain in the
aperture. Secondly, the nucleus begins to contribute non-negligibly
(~10 per cent) to the total signal. Thirdly, the tail becomes increas-
ingly foreshortened as viewed from Earth, contributing more signal
to the aperture.

Although the pre- and post-perihelion GMOS colour data cannot
be compared directly due to the differing aperture size, one night
(2014 November 12) had a field clear enough to measure A(0°)fp
in a 10* km radius aperture. A(0°)fp in the 10* km aperture was
~40 per cent higher than in the 5 x 10° km aperture. If all of the
2014 data are scaled up by ~40 per cent, it still appears that A(0°)fp
was higher post-perihelion, presumably due to the presence of large
and/or low-velocity grains released near perihelion remaining in
the photometric aperture (grains released near the previous perihe-
lion would have left the photometric aperture prior to our earliest
observations). A bias for larger A(0°)fp values at large heliocen-
tric distances post-perihelion as well as the phenomenon of larger
Afp values being recorded in smaller apertures (implying a bright-
ness profile steeper than p~!) are common (e.g. Baum, Kreidl &
Schleicher 1992).

From AT = 435 to +120d (2015 September through Decem-
ber), A(0°)fp data decreased as rg“. This is consistent with the
findings of Boehnhardt et al. (2016) from 2015 September through
2016 May (power-law slope of —4.1 to —4.2). However, it is steeper
than the slopes reported over comparable ry ranges in previous ap-
paritions by Schleicher (2006, —1.6 £ 1.0 for green continuum)
and Snodgrass et al. (2013, —3.4). The overall slope flattens signif-
icantly, to —2.6 for AT > 35 d, if the GMOS 7 data are included
and converted to R values using the SDSS conversions® and assum-
ing solar colour. However, the data are not well fitted by a single

7 https://www.gemini.edu/sciops/instruments/gmos/calibration/baseline-
calibs
8 http://classic.sdss.org/dr5/algorithms/sdssUB VRITransform.html
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Table 2. Apparent magnitude and phase angle corrected Afp for visible-light data.

Date Tel.” ot Phase Apparent magnitude and magnitude uncertainty A(0°)fp (cm)
c

(UT) (km)  corr. me o Owy Mg om,  me o ow, my om, my, ow, R g i i@ 2

2014Sep20 GS 5x 10° —0.649 - - 21017 - 20222 0.042 20011 - 20152 - - 73 78 69 52
2014 0ct29 GS 5x 10 —0.652 - - 20738 - 19.984 0.045 - - - - - 99 102 - -

2014Nov 1l  GS 5x10®° —0.619 - - - - 19981 0.067 - - - - - - 9 - -

2014Nov 12 GS 5x10° —0.616 - - - - 19.953 0.034 - - - - - - 101 - -

2014Nov 13  GS 5x10° —0.613 - - - — 19943 0.022 - - - - - - 101 - -

2014Nov 15 GS 5x10° —0.606 - - 20566 - 19.896 - 19.626 - 19.442 - - 110 105 98 101
2014Nov 16 GS 5x10° —0.603 - - - - 19976 0.032 - - - - - - 97 - -

2014Nov 17 GS 5x10° —0.600 - - - - 19908 0.027 - - - - - - 103 - -

2014Nov 18 GS 5x10° —0.594 - - - - 19.852 0.021 - - - - - - 108 - -

2014Nov 19 GS 5x10° —0.591 - - 20885 - 19462 0.038 19.608 - 19.462 - - 80 153 98 97
2015 Aug 18  3lin 104 —1.023 13.420 0.030 - - - - - - - - 1366 - - - -

2015 Aug 19 3lin 10* —1.024 13.386 0.039 - - - - - - - - 411 - - - -

2015 Aug 20 3lin 10% —1.024 13.366 0.040 - - - - - - - - 1440 - - - -

2015 Aug 21 3lin 10* —1.024 13.345 0.059 - - - - - - - - 1470 - - - -

2015 Aug 22 3lin 10% —1.024 13.227 0.025 - - - - - - - - 1642 - - - -

2015 Aug 23 3lin 10* —1.024 13.283 0.023 - - - - - - - - 1562 - - - -

2015 Aug 29 3lin 10% —1.023 13.243 0.034 - - - - - - - - 1649 - - - -

2015 Sep 12 3lin 10* —1.021 13.317 0.058 - - - - - - - - 1650 - - - -

2015 Sep 18 3lin 10* —1.020 13.399 0.010 - - - - - - - - 1594 - - - -

2015 Sep 19 3lin 10* —1.020 13.312 0.038 - - - - - - - - 1739 - - - -

2015 Sep20  3lin 10% —1.020 13.426 0.033 - - - - - - - - 1577 - - - -

2015 Sep23 DCT 10* —1.018 13.548 0.054 - - - - - - - - 1439 - - - -

2015 Sep24 DCT 10% —1.018 13.580 0.034 - - - - - - - - 1409 - - - -

2015 Sep24  3lin 10* —1.018 13.595 0.036 - - - - - - - - 1390 - - - -

2015 Sep25  3lin 10t —1.018 13.633 0.013 - - - - - - - - 134 - - - -

2015 Sep 26 3lin 10* —1.018 13.647 0.013 - - - - - - - - 1346 - - - -

2015 Sep 30  3lin 104 —1.018 13.763 0.080 - - - - - - - - 1251 - - - -

2015 Oct 2 3lin 104 —1.017 13.809 0.029 - - - - - - - - 1218 - - - -

2015 Oct 3 3lin 10* —1.017 13.820 0.021 - - - - - - - - 1218 - - - -

2015 0Oct 13 3lin 104 —1.015 14.170 0.059 - - - - - - - - 95%9 - - - -

2015Nov2  3lin 10* —1.013 14.652 0.023 - - - - - - - - 726 - - - -

2015Nov8  3lin 104 —1.012 14.822 0.030 - - - - - - - - 649 - - - -

2015Nov9  3lin 10* —1.012 14.898 0.025 - - - - - - - - 609 - - - -

2015 Nov 10 3lin 10* —1.012 14.906 0.039 - - - - - - - - 609 - - - -

2015 Nov 18  3lin 10* —1.009 15.075 0.026 - - - - - - - - 548 - - - -

2015 Nov 19 3lin 10* —1.007 15.113 0.028 - - - - - - - - 532 - - - -

2015 Nov 20 3lin 10* —1.007 15.108 0.039 - - - - - - - - 538 - - - -

2015 Nov 27  3lin 10* —1.002 15.279 0.032 - - - - - - - - 47 - - - -

2015 Nov 30  3lin 10* —1.001 15.371 0.023 - - - - - - - - 443 - - - -

2015Dec 1 3lin 10* —0.999 15.383 0.019 - - - - - - - - 40 - - - -

2015Dec6  DCT 10* —0.994 15.369 0.046 - - - - - - - - 454 - - - -

2015Dec7  DCT 10* —0.992 15.373 0.086 - - - - - - - - 453 - - - -

2016 Feb 16  GN 10* —0.513 - - 16.440 0.006 15318 0.006 15947 0.005 14.737 0.017 - 271 392 161 423
2016 Mar 10  GN 10* —0.169 - - 16.480 0.012 - - - - - - - 242 - - -

2016 Apr 13  GN 10* —0.516 - - 18.259 0.030 17.977 0.185 16.959 0.052 16.552 0.062 - 120 80 149 188
2016 Apr30 GN 10* —0.631 - - 18.572 0.014 18.060 0.010 17.526 0.029 16.886 0.075 - 142 118 141 219
2016 May 23 GN 10* —0.693 - - 19.271 0.091 18.142 0.030 18.813 0.035 17.472 0.078 - 126 184 73 215
2016 May 28 GN 10* —0.696 - - - - 18.906 0.060 - - - - - - 101 - -

“Telescope: GS = Gemini South, GN = Gemini North, DCT = Discovery Channel Telescope, 31in = Lowell 31-in.
b Aperture radius.
“Correction in magnitudes to 0° phase angle using the Halley—Marcus phase function (Schleicher et al. 1998; Marcus 2007).

power law over the full time interval because the conditions for
comparing A(0°)fp are not met at large ry as previously discussed.
The differences in power-law slopes between authors is likely due
to differences in methodology (e.g. Snodgrass et al. 2013 assume
a linear phase angle correction, while Schleicher 2006 use a non-
constant aperture size and no phase angle correction), non-uniform
sampling of our data (biasing towards a steeper fit), as well as
intrinsic scatter in the data, which is significant due to our short
integration times when the comet was faint.

3.3 Possible outbursts

Table 2 and Fig. 5 reveal increases in brightness above the local
trend and larger than the photometric uncertainties on 2015 August
22 (+9.3d) and 2015 September 19 (437.3 d) that appear to have
been minor outbursts. These are not caused by intrusion of a passing
star and do not appear to be due to miscalibration as field stars agree
with their catalogue magnitudes within £0.02 mag on August 22
and +0.04 mag on September 19. A linear fit to the magnitudes on
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Figure 5. Visible-light A(6 = 0°)fp during the apparition. Uncertainties are not plotted, but can be calculated from Table 2 and are generally smaller than
the data points. The vertical dashed line denotes perihelion. The dotted curve is the best-fitting HO production rate (Hansen et al. 2016) from all Rosetta
instruments (pre-perihelion) and from ROSINA (post-perihelion) scaled to line up with our data. Note that this curve does not attempt to fit the post-perihelion
shift in the peak water production, which Hansen et al. (2016) found to occur at +18 to +-22d.

August 18-21 predicts the comet should have been 0.09 mag fainter
on August 22 than we measured, a 3o result based on our estimated
uncertainty. On August 23, the apparent magnitude was 0.01 mag
brighter than the linear fit would predict, indicating that to within
our photometric uncertainties the comet had returned to its normal
brightening behaviour. Similarly, a linear fit to September 18-30
but excluding September 19 predicts a magnitude 0.11 fainter on
September 19 than that was measured (also ~3 x the uncertainty
for that night). September 20 was 0.03 mag brighter than the linear
fit would predict, but this was within the photometric uncertainty
of the linear fit, suggesting the comet had returned to its baseline
behaviour.

The August 22 brightening appears to be the photometric signa-
ture of the outburst identified by Boehnhardt et al. (2016) on the
basis of coma morphology in their 2015 August 23 data. Boehnhardt
et al. (2016) did not see evidence of the outburst in their August 22
images or photometry, suggesting the outburst commenced some
time between the end of their observations (3:17 ut) and the begin-
ning of our observations at 11:17 ut. Inspection of our enhanced
images does not show unusual coma morphology on August 22
or 23. For an outflow velocity of ~150 m s~' (as suggested by
Boehnhardt et al. 2016), the outburst material would have travelled
at most ~4300 km before our first observation on August 22, which
is roughly comparable to the seeing disc and would not be identifi-
able morphologically. By August 23, the ejected material had likely
dispersed enough that it was not detectable in our 31-in images (ef-
fective aperture size of 0.7-m), which presumably had lower signal
to noise than those acquired by Boehnhardt et al. (2016) with the
2-m telescope at Mt. Wendelstein. The return to the pre-outburst
brightening rate on August 23 indicates that most of the outburst
material was moving faster than the ~115 m s~! needed to have left
the photometric aperture by this time.

We can see the signature of this outburst in our radial pro-
files, where the power-law slope of the coma brightness (0 from
p =4 x 10°-1.5 x 10* km) was approximately constant on Au-
gust 20-21 (¢ = —1.77 and —1.79), but steeper on August 22
(e = —1.89) signifying additional material closer to the nucleus,

and slightly flatter on August 23 (¢ = —1.75) signifying addi-
tional material further from the nucleus. These values are in good
agreement with Boehnhardt et al. (2016)’s pre- and post-outburst
slopes on August 22 and 23. (Note that for direct comparison be-
tween these results, +1 should be added to the slopes presented by
Boehnhardt et al. 2016 because they report the slope of Afp, which
is proportional to flux/p, while we measured the slope of the flux.)
After August 23, our next visible-light data were on August 29, at
which time the slope was even flatter (¢« = —1.71). Although this
flatter slope could be due to very slow material from the outburst
moving outwards, the temporal gap from our earlier data makes it
impossible to draw a firm conclusion. Our near-IR data were sam-
pled too infrequently at this time (August 20 and 26) to exhibit a
clear signature of the outburst.

We cannot look for the signature of the outburst with CN pho-
tometry because standard stars were not observed on any of these
nights and there is no catalogue available to calibrate the images
with background stars. The slope of the CN radial profile does not
show evidence of an outburst on August 22. This could be real
and indicating that the outburst did not contain significant amounts
of CN. However, this may simply be due to the combination of
the poor signal to noise of the CN images and large PSF (typi-
cal effective seeing for this telescope is 3-5 arcsec), which com-
bined to flatten the CN profiles and made it difficult to accurately
centroid.

Vincent et al. (2016a) compiled outbursts seen by Rosetta near
perihelion. Their event #16 was detected by the NavCam at
6:47 ut on August 22, precisely in the window between the Mt.
Wendelstein observations and our own. While it is tempting to as-
cribe the outburst we detected to this event, we caution that the
‘relative luminosity’ of event #16, as given by Vincent et al. (2016a,
column 10 of their table 1), was among the lowest in the sample.
Several ostensibly stronger outbursts occurred less than 24 h before
our imaging on other nights and were not obvious in our data (e.g.
event #12 at 17:21 on August 12, event #23 at 10:10 on August
28). Since we detected an increase of ~10 per cent in the amount of
coma material within p = 10* km on August 22, if event #16 was
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the source, the NavCam snapshot must have recorded merely a very
small percentage of the total outburst. Furthermore, Vincent et al.
(2016a) report a latitude for the outburst of —40°, while modelling
by Boehnhardt et al. (2016) suggested a source near latitudes +5°
to +10°. Thus, the identification of event #16 as the source of the
outburst we observed on August 22 is far from certain.

We are not aware of any reports of an outburst on or around 2015
September 19 to corroborate our possible detection. The coma’s
power-law slope is not significantly different on September 19 than
on neighbouring days, and we do not see obvious morphological
changes in either R or CN. The near-IR observations were taken
too infrequently around this time to confirm an outburst photomet-
rically and they do not show clear morphological evidence. Thus,
we consider this only a potential outburst.

4 DISCUSSION

While coma structures have been studied in a dozen or so comets,
the vast majority of these have been studied on only one apparition,
either because the comets have long periods or because viewing
geometry has only permitted investigation on a single apparition
during the modern era. A few comets have had near polar jets
identified on multiple apparitions, e.g. 2P/Encke (Sekanina 1991)
and 10P/Tempel 2 (Knight et al. 2012), allowing the orientation
of their rotation axes to be determined and the stability of their
rotational poles to be tested. Very few comets with structures in the
coma that are attributed to lower latitude source regions have been
observed on multiple apparitions (e.g. Farnham 2009).

Schleicher (2006) determined a pole solution for 67P based on
dust coma features observed in 1996, and Weiler et al. (2004) pub-
lished constraints on the pole based on dust coma features observed
in 2004. Vincent et al. (2013) utilized these as well as dust features
seen in 2009 to develop the most comprehensive model of 67P’s
pole and locations of active regions prior to Rosetta’s arrival. Their
modelling constrained the rotational pole orientation within £10°
in both RA and Dec., and could reproduce the observed activity dur-
ing the 2003 and 2009 apparitions with three active regions located
at latitudes —45°, 0° and +60°.

We applied the Vincent et al. (2013) model without adjusting any
parameters to our data, with the prediction for the morphology near
perihelion shown in Fig. 6. The left-hand panel shows our enhanced
J-band image from 2015 August 26 while the right-hand panel
shows the model on the same scale. The model does not include
the tail, which is in the opposite direction as the yellow arrow,

Figure 6. Enhanced J-band image from 2015 August 26 (left) compared
with a simulated image from the same time using the model from Vincent
et al. (2013). The direction to the Sun is shown in yellow, the rotation axis
is in red. North is up and east to the left. Each image is 60 000 km across.
The model does not include the tail or bulk coma.

at a PA. ~ 280°. Overall, the modelled behaviour replicates the
observations this apparition reasonably well. The southern feature
goes in the correct direction, but curves more than was observed. The
sunward feature is in the predicted location but extends significantly
farther in the data than in the simulations. Both of these features
can be explained as being the edges of a single fan coming from the
same source, where the optical depth through the edges is higher
due to the projection of 3D feature on to a 2D image, thus causing it
to be the only part evident in our enhanced images. The model can
likely be improved by adjusting the dust size and velocity, as well
as using the pole determined by Rosetta, but such investigations
are beyond the scope of this paper. Our data set’s long temporal
baseline with high spatial resolution provides excellent constraints
for tracking the migration of activity across the surface during 67P’s
post-perihelion phase, and we hope to investigate this in detail in a
subsequent paper.

Although we have only made a cursory investigation into the
modelling at this time, the similarity of 67P’s coma morphology
to the predictions based on 2003 and 2009 is a compelling finding
(we note that Boehnhardt et al. 2016 and Zaprudin et al. 2017 have
also reached similar conclusions with their own data sets). This
demonstrates that the comet’s pole orientation and sources of activ-
ity have been relatively unchanged over at least the last three orbits.
Despite the strong seasonal effects that see the nucleus’ Northern
hemisphere covered with freshly deposited material during the brief
but intense southern summer (e.g. Fornasier et al. 2016), the overall
behaviour is consistent and therefore the behaviour observed by
Rosetta is likely typical. With this knowledge, we can attempt to re-
late the active regions identified by Vincent et al. (2013) to specific
terrain seen on the surface (El-Maarry et al. 2015, 2016). Their high
latitude (4-60°) region ‘C’ likely corresponds with the Hapi region;
the specific regions corresponding to their regions ‘B’ (—45°) and
‘C’ (0°) are less certain. Region ‘B’ likely corresponds to the south-
ern concavity while region ‘A’ may correspond to Imhotep. Further
work may allow us to tie specific properties of the coma features
to their origin at the surface, providing a unique link between the
large-scale Earth-based observations with the in situ observations
made by Rosetta.

We note that a promising approach to bridging the gap between
the Earth-based and in sifu observations is provided by the mod-
elling of Kramer & Noack (2016) who replicated the general ap-
pearance of the many small jets seen within a few kilometres of the
surface by OSIRIS by simply modelling dust being released across
the entire surface and responding to solar illumination. They found
that the dust jets could be traced back to local concavities, both pits
and craters as well as the large ‘neck’ region between the two lobes
of the nucleus. While Kramer & Noack (2016) were not the first
to model activity across the whole surface — Keller et al. (2015)
accurately predicted changes in the rotation period by modelling
water sublimation — or to propose this behaviour — specific linkages
between jets and steep terrain had been identified previously by,
e.g. Farnham et al. (2013) and Vincent et al. (2015, 2016b), while
Crifo et al. (2002) argued that the morphology was affected by the
shape of the comet — their powerful modelling, if extended out-
wards from the nucleus by two to three orders of magnitude, could
demonstrate exactly how the numerous and variable small-scale jets
seen in the extreme inner coma produce the few large-scale, slowly
varying features seen extending for thousands of kilometres in our
and other Earth-based images.

An important implication of the repeatable nature of 67P’s ac-
tivity from apparition to apparition is that remote observations in
support of the Rosetta mission need not be confined to the 2015
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apparition. As noted in the introduction, 67P’s 2015 apparition was
very poor for Earth-based observers, making observations challeng-
ing and limiting the science that could be achieved from Earth. In
contrast, the upcoming 2021 apparition will be 67P’s best appari-
tion since 1982, with A reaching a minimum of 0.42 au and the
comet visible in dark skies for more than a year around perihelion.
These vastly superior observing conditions will permit far better
observations than were achieved during the 2015 apparition, thus
giving additional context to the Rosetta results.

Another upshot of this work is the value of regular observations of
high photometric precision for detecting small outbursts in comets.
Such outbursts have only been detected in a small number of comets
(Ishiguro et al. 2016) and their frequency across the comet popu-
lation is as yet unknown. Monitoring of large numbers of comets
for small outbursts will become possible in the near future with the
Large Synoptic Survey Telescope (LSST). A quantitative assess-
ment of the frequency and energy involved in outbursts may reveal
if small outbursts are attributable to surface processes like cliff col-
lapse or subsurface thermal processes like amorphous-to-crystalline
H,O0 ice transitions.

5 SUMMARY

We have presented our extensive observations of comet 67P using
Gemini South and North and Lowell Observatory’s DCT and 31-in
telescopes in support of the Rosetta mission. We obtained usable
data on 68 nights between 2014 September and 2016 May, with
an effort made to obtain data regularly when the comet was visible
from the ground and with a higher cadence at times of high interest
to the mission (Philae landing and perihelion). We emphasized dust
coma studies, as we obtained the most extensive J, H, Ks data set
on 67P in existence and supplemented this with g, 7/, 7/, 7’ imaging
early and late in the apparition, and R and CN gas monitoring when
the comet was brightest.
Our major findings include:

(i) we observed an evolution in 67P’s coma morphology. From
2014 September through 2015 June, it was dominated by a central
condensation with the only significant feature being the tail. From
2015 August through 2016 May, there were visible asymmetries
in the inner coma. Upon enhancement, these asymmetries were
revealed to be due to one or more mostly straight features (i.e. ‘jets’).
These features spanned projected distances exceeding 10* km at
the comet and were therefore much larger in scale than anything
identified by the OSIRIS camera on Rosetta. Similar morphology
was observed in all concurrently acquired broad-band filters (g’, 7/,
R, 7,7, J, H, Ks), which we interpret as indicating that the features
were composed of dust grains having a range of particle sizes.
Narrow-band CN gas images had a very different appearance from
the dust images, lacking distinct features and instead being brighter
throughout the Southern hemisphere of our images (corresponding
to summer on the nucleus).

(ii)) We measured dust production via the Afp parameter and
detected a clear peak ~30d after perihelion. Both the activity level
and the time of peak activity are consistent with predictions from
previous apparitions. Afp decreased as rﬁ“ from AT = +35d to
+120d and as ry 26 if the fading portion is extended to +300d.
The flattening slope at large heliocentric distances is likely due to
large and slow moving grains remaining in the aperture and also
causes the post-perihelion Afp to be somewhat higher than the pre-
perihelion value at comparable ry, but could also be due to other
assumptions, e.g. the phase angle correction used.

Gemini and Lowell observations of 67P  S673

(iii) We detected two apparent outbursts in our photometry, on
2015 August 22 and 2015 September 19. Neither was evident mor-
phologically, and by the next night was not convincingly evident
photometrically. When combined with observations by Boehnhardt
etal. (2016), we constrain the time of outburst on August 22 to 3:17—
11:17 ut, and tentatively identify it with an event seen by Rosetta
(#16 in Vincent et al. 2016b), although the outburst we detected
appears to have been significantly stronger than indicated by the
snapshot acquired by Rosetta. We are not aware of any corroborat-
ing detections of the apparent outburst on September 19. We do not
see clear evidence of any other outbursts despite several identified
by Vincent et al. (2016b) that occurred within 24 h preceding our
observations.

(iv) The dust morphology can be replicated reasonably well using
the model of Vincent et al. (2013) created from 2003 and 2009
observations. This indicates that the pole orientation and active areas
on 67P have been relatively constant over at least three apparitions,
and supports the conclusion that changes in 67P’s morphology are
primarily driven by the subsolar latitude.
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