1,836 research outputs found
Metastable SUSY Breaking, de Sitter Moduli Stabilisation and K\"ahler Moduli Inflation
We study the influence of anomalous U(1) symmetries and their associated
D-terms on the vacuum structure of global field theories once they are coupled
to N=1 supergravity and in the context of string compactifications with moduli
stabilisation. In particular, we focus on a IIB string motivated construction
of the ISS scenario and examine the influence of one additional U(1) symmetry
on the vacuum structure. We point out that in the simplest one-Kahler modulus
compactification, the original ISS vacuum gets generically destabilised by a
runaway behaviour of the potential in the modulus direction. In more general
compactifications with several Kahler moduli, we find a novel realisation of
the LARGE volume scenario with D-term uplifting to de Sitter space and both
D-term and F-term supersymmetry breaking. The structure of soft supersymmetry
breaking terms is determined in the preferred scenario where the standard model
cycle is not stabilised non-perturbatively and found to be flavour universal.
Our scenario also provides a purely supersymmetric realisation of Kahler moduli
(blow-up and fibre) inflation, with similar observational properties as the
original proposals but without the need to include an extra (non-SUSY)
uplifting term.Comment: 38 pages, 8 figures. v2: references added, minor correction
Polar Actions on Berger Spheres
The object of this article is to study a torus action on a so-called Berger sphere. We also make some comments on polar actions on naturally reductive homogeneous spaces. Finally, we prove a rigidity-type theorem for Riemannian manifolds carrying a polar action with a fix point
On the Effective Description of Large Volume Compactifications
We study the reliability of the Two-Step moduli stabilization in the type-IIB
Large Volume Scenarios with matter and gauge interactions. The general analysis
is based on a family of N=1 Supergravity models with a factorizable Kaehler
invariant function, where the decoupling between two sets of fields without a
mass hierarchy is easily understood. For the Large Volume Scenario particular
analyses are performed for explicit models, one of such developed for the first
time here, finding that the simplified version, where the Dilaton and Complex
structure moduli are regarded as frozen by a previous stabilization, is a
reliable supersymmetric description whenever the neglected fields stand at
their leading F-flatness conditions and be neutral. The terms missed by the
simplified approach are either suppressed by powers of the Calabi-Yau volume,
or are higher order operators in the matter fields, and then irrelevant for the
moduli stabilization rocedure. Although the power of the volume suppressing
such corrections depends on the particular model, up to the mass level it is
independent of the modular weight for the matter fields. This at least for the
models studied here but we give arguments to expect the same in general. These
claims are checked through numerical examples. We discuss how the factorizable
models present a context where despite the lack of a hierarchy with the
supersymmetry breaking scale, the effective theory still has a supersymmetric
description. This can be understood from the fact that it is possible to find
vanishing solution for the auxiliary components of the fields being integrated
out, independently of the remaining dynamics. Our results settle down the
question on the reliability of the way the Dilaton and Complex structure are
treated in type-IIB compactifications with large compact manifold volumina.Comment: 23 pages + 2 appendices (38 pages total). v2: minor improvements,
typos fixed. Version published in JHE
Towards Realistic String Vacua From Branes At Singularities
We report on progress towards constructing string models incorporating both
realistic D-brane matter content and moduli stabilisation with dynamical
low-scale supersymmetry breaking. The general framework is that of local
D-brane models embedded into the LARGE volume approach to moduli stabilisation.
We review quiver theories on del Pezzo () singularities including
both D3 and D7 branes. We provide supersymmetric examples with three
quark/lepton families and the gauge symmetries of the Standard, Left-Right
Symmetric, Pati-Salam and Trinification models, without unwanted chiral
exotics. We describe how the singularity structure leads to family symmetries
governing the Yukawa couplings which may give mass hierarchies among the
different generations. We outline how these models can be embedded into compact
Calabi-Yau compactifications with LARGE volume moduli stabilisation, and state
the minimal conditions for this to be possible. We study the general structure
of soft supersymmetry breaking. At the singularity all leading order
contributions to the soft terms (both gravity- and anomaly-mediation) vanish.
We enumerate subleading contributions and estimate their magnitude. We also
describe model-independent physical implications of this scenario. These
include the masses of anomalous and non-anomalous U(1)'s and the generic
existence of a new hyperweak force under which leptons and/or quarks could be
charged. We propose that such a gauge boson could be responsible for the ghost
muon anomaly recently found at the Tevatron's CDF detector.Comment: 40 pages, 10 figure
Moduli Redefinitions and Moduli Stabilisation
Field redefinitions occur in string compactifications at the one loop level.
We review arguments for why such redefinitions occur and study their effect on
moduli stabilisation and supersymmetry breaking in the LARGE volume scenario.
For small moduli, although the effect of such redefinitions can be larger than
that of the corrections in both the K\"ahler and scalar potentials,
they do not alter the structure of the scalar potential. For the less well
motivated case of large moduli, the redefinitions can dominate all other terms
in the scalar potential. We also study the effect of redefinitions on the
structure of supersymmetry breaking and soft terms.Comment: 21 pages, 3 figures; v2. references adde
Quantum Gravity Constraints on Inflation
We study quantum gravity constraints on inflationary model building. Our
approach is based on requiring the entropy associated to a given inflationary
model to be less than that of the de Sitter entropy. We give two prescriptions
for determining the inflationary entropy, based on either `bits per unit area'
or entanglement entropy. The existence of transPlanckian flat directions,
necessary for large tensor modes in the CMB, correlates with an inflationary
entropy greater than that allowed by de Sitter space. Independently these
techniques also constrain or exclude de Sitter models with large-rank gauge
groups and high UV cutoffs, such as racetrack inflation or the KKLT
construction.Comment: 22 pages; v2 references adde
Neutrino Masses, Baryon Asymmetry, Dark Matter and the Moduli Problem : A Complete Framework
Recent developments in string theory have led to "realistic" string
compactifications which lead to moduli stabilization while generating a
hierarchy between the Electroweak and Planck scales at the same time. However,
this seems to suggest a rethink of our standard notions of cosmological
evolution after the end of inflation and before the beginning of BBN. We argue
that within classes of realistic string compactifications, there generically
exists a light modulus with a mass comparable to that of the gravitino which
generates a large late-time entropy when it decays. Therefore, all known
mechanisms of generating the baryon asymmetry of the Universe in the literature
have to take this fact into account. In this work, we find that it is still
possible to naturally generate the observed baryon asymmetry of the Universe as
well as light left-handed neutrino masses from a period of Affleck-Dine(AD)
leptogenesis shortly after the end of inflation, in classes of realistic string
constructions with a minimal extension of the MSSM below the unification scale
(consisting only of right-handed neutrinos) and satisfying certain microscopic
criteria described in the text. The consequences are as follows. The lightest
left-handed neutrino is required to be virtually massless. The moduli
(gravitino) problem can be naturally solved in this framework both within
gravity and gauge mediation. The observed upper bound on the relic abundance
constrains the moduli-matter and moduli-gravitino couplings since the DM is
produced non-thermally within this framework. Finally, although not a definite
prediction, the framework naturally allows a light right-handed neutrino and
sneutrinos around the electroweak scale which could have important implications
for DM as well as the LHC.Comment: 41 pages, no figures, journal version adde
Wavefunctions and the Point of E8 in F-theory
In F-theory GUTs interactions between fields are typically localised at
points of enhanced symmetry in the internal dimensions implying that the
coefficient of the associated operator can be studied using a local
wavefunctions overlap calculation. Some F-theory SU(5) GUT theories may exhibit
a maximum symmetry enhancement at a point to E8, and in this case all the
operators of the theory can be associated to the same point. We take initial
steps towards the study of operators in such theories. We calculate
wavefunctions and their overlaps around a general point of enhancement and
establish constraints on the local form of the fluxes. We then apply the
general results to a simple model at a point of E8 enhancement and calculate
some example operators such as Yukawa couplings and dimension-five couplings
that can lead to proton decay.Comment: 46 page
- …