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Abstract

The object of this article is to study a torus action on a so called Berger
sphere. We also make some comments on polar actions on naturally reductive
homogeneous spaces. Finally, we prove a rigidity-type theorem for Rieman-
nian manifolds carrying a polar action with a fix point.
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1 Introduction.

In a generic Riemannian manifold (M, g) there are neither Killing vector fields (i.e.
infinitesimal isometries) nor non trivial totally geodesic submanifolds. The concept
of polar actions is a good example where both objects come together nicely. A Lie
subgroup of isometries G C I(M,g) acts polarly on (M, g) if there exists a con-
nected closed submanifold ¥ meeting all G-orbits orthogonally. Notice that the
sections X are totally geodesic submanifolds of (M, g). So, both Killing vector
fields and totally geodesic submanifolds fit together in the setting of polar actions.
Polar actions have been considered by several authors, see for example [6],[10], [1].

Let G act polarly on (M, g) and let § be another metric on M. Of course, G does
not act isometrically on (M, g) in general. Even in case that the G-action is still
by isometries on (M, g) the change of the metric, usually, changes also the second
fundamental form of submanifolds of M . Thus, a totally geodesic submanifold of
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(M, g) is not in general a totally geodesic submanifold of (M, g). Indeed, if the
G-action on (M, g) is still polar then there are no reasons to think that the old
section Y should be still a section after changing the metric.

The first part of this paper is dedicated to give a proof (and some generalizations to
naturally reductive spaces) of a theorem stated in [5]. Namely, the S!-action on a
Berger sphere (S3, Berger(e)) given by 60.(z,w) := (z,e®w) is polar if and only if
¢ =1 i.e. the Berger sphere is just a standard sphere. Our proof is a straightforward
corollary of the fact that there are no totally geodesic surfaces in a three dimensional
Berger sphere different from the standard one. Also we will show that there is, up
to isometry, just one locally polar action on a Berger sphere (S®, Berger(e # 1)),

namely the diagonal action of the torus 7.

The proof in [5] is not correct since the authors make the confusion about old and
new section explained above.

It is interesting to note that the above non-polar S* action on a fixed Berger sphere
(¢ > 1) has fixed points p € S*. Thus, S* acts also in any geodesic sphere around
a fixed point p. Since any geodesic sphere has dimension 2, this action is locally
polar (actually polar) on any geodesic sphere around p. This contrasts with the
well-known fact that in Euclidean spaces (and real space forms) a G-action with
a fixed point p € R™ is polar if and only if is polar in just one (and then in any)
sphere centered at p € R™.

Polar actions with fixed points in general homogeneous spaces were studied in [8].
In the last part of this article we give a generalization of Theorem 3 in [8]. Namely,
we get

Theorem 1.1 Let M be a homogeneous Riemannian manifold. Let G be a Lie
group of isometries acting polarly on M . If the G -action on M has a fixed point
and a section for the G -action is a compact locally symmetric space then, M is
locally symmetric.

Historical Remark. According to E. Cartan it was G. Ricci-Curbastro who first
observed the interplay between totally geodesic submanifolds and isometries. Let
us quote from Cartan’s book this théoréme remarquable [4, pp. 122, 107]:

S’il existe dans ’espace de Riemann une famille d un paramétre de plans, leurs
trajectories orthogonales etablissent entre les differents plans de la famille une cor-
respondence ponctuelle isométrique.



2 Preliminary results.

Let M be a Riemannian manifold and let G C I(M) be a connected Lie sub-
group of isometries. The action of G on M is called polar if there exists a closed
embedded submanifold ¥ C M, called a section, such that every G-orbit hits X
perpendicularly. The G-action is called locally polar if the distribution given by the
normal spaces to the principal orbits is integrable. A polar action is locally polar

but the converse it is not true. For a detailed discussion of both definitions see [7,
p. 6 and Appendix A.].

It is known that if G acts polarly then the section ¥ is a totally geodesic sub-
manifold of M (see [11] or [1] for a detailed explanation). Indeed, note that if the
action is locally polar then the integral leaves of the normal distribution are totally
geodesic as a consequence of the Killing equation.

In [12] it is proved that the existence of a totally geodesic hypersurface in an ir-
reducible and simply connected naturally reductive homogeneous space M implies
that M has constant sectional curvature. As a consequence we get the following
proposition.

Proposition 2.1 Let M be a simply connected and irreducible naturally reductive
homogeneous space. Let X be a Killing vector field and let ¢* be the corresponding
monoparametric Lie group of isometries. If ¢~ acts locally polar on M then M
has constant sectional curvature.

Let S*" 1 = {(21,---,2,) € C" : |z1]*+ - -+]|2a|* = 1} be the standard unit sphere
in C" =R,

Let us now change the standard metric (i.e. the Riemannian structure) on the
sphere S*"~1 just by changing (by a positive constant ¢) the length of the Hopf
vector field H(zy, 22, -+ ,2,) = (iz1,922, - ,12,). This new family of metrics
(S?"~1 Berger(e)) on the sphere, are called Berger spheres.

Theorem 2.2 [3] The Berger spheres (S*'~1, Berger(e)) are naturally reductive
Riemannian homogeneous spaces. Indeed, they are geodesic spheres (of a convenient
radius) in a complex space form.

We recall also the following proposition.

Proposition 2.3 A Berger sphere (S**~!, Berger(¢)) has constant sectional cur-
vature if and only if € =1 i.e. the Berger sphere is just the standard one.

We summarize these results as follows.

Theorem 2.4 If the flow of a Killing vector field X # 0 of a Berger sphere
(S?=1 Berger(g)) acts locally polar then e = 1.



3 Polar actions on Berger spheres.

In this section we give an application of the results of the previous section.

Let 707! = §'x S' x -+ x §' act on $*"~! C C", endowed with the standard

v
n—1 times

metric, in the following way

i0 6 o i0 6.
(€72, e (21, 20,0 2n) 1= (21,€ P20, - €7 2y,).
In other words, the action is diagonal, it fixes the first coordinate, and is just a

rotation of the other coordinates.

Then is easy to check that this action (by isometries) is polar and a section is given
by:

D=5 (21,22, -+, 2) € C" :Im(z) = Im(25) = -+ = Im(z,) = 0}.

Theorem 3.1 Let € > 0 be a real number. If the above T !-action is locally
polar on (S*"7!, Berger(g)) then € = 1, i.e. the action is (locally) polar just on the
standard sphere.

Proof. Let o € U(n) be the diagonal matrix o := diag(1,1,—1,---,—1). Then,
e 2imes

o is an isometry of (S*"~! Berger(¢)). Thus, the set F, of fixed points of o
is a totally geodesic submanifold of (S**~! Berger(e)). Indeed, it is not difficult
to check that F, = S?'({(z1,22,0,0,---,0) € C"}. Also note that the induced
Riemannian metric on F), is just a Berger sphere i.e. F, = (93, Berger(e)). Finally,
note that the torus 77! leaves F, invariant and the induced action is exactly the
St-action on S? given by (z1,e%22,).

If the torus 7" ! acts locally polar on (S*"~! Berger(e)) then the S'-action is
also locally polar on F, = (S3 Berger(¢)). Thus, by Theorem 2.4 it follows that
e =1 as we claim. O

Up to conjugation, the torus T2 = diag(e*,e®) is the unique Lie subgroup of
isometries of (5%, Berger(e # 1)) which is not transitive on S and acts with
codimension 1. So, we get the following theorem.

Theorem 3.2 On a Berger sphere (S, Berger(e # 1)) there is just one locally
polar action, up to isometry. Namely, the action of the torus T? given by diagonal
multiplication.



4 Polar actions with fixed points.

In [8] the authors studied G-actions with fixed points and they proved the following
theorem.

Theorem 4.1 [8, Theorem 3] Let M be a compact Riemannian homogeneous space.
Let G be a compact Lie group acting on M isometrically and polarly; if the G -
action on M has a fized point and the section for the G -action is flat or a rank
one symmetric space then M 1is a locally symmetric.

Remark 4.2 Notice that our Theorem 2.j for n = 2 follows also from the above
theorem. Indeed, a section for the S'-actions is a totally geodesic homogeneous
submanifold of dimension 2 (i.e. a symmetric space of rank one or a flat surface).
This forces the Berger sphere to be locally symmetric and this occurs just when
e=1.

Proof of Theorem 1.1 Let p € M be a fixed point of the G-action. Then, it is
standard to see that any geodesic y(t) passing through p is contained in a section.
Since sections are compact symmetric spaces any geodesic is contained in a compact
flat. Thus, M is a compact Riemannian homogeneous space all of whose geodesics
are contained in a compact flat. So we can apply [9] to get that the universal cov-
ering M splits as M = R" x Cy x -+ x Cp xS, where S is a symmetric space
and the manifolds C; are manifolds all of whose geodesics are closed. Since M is
homogeneous any factor C; is homogeneous too. Then, from [2, pp. 194, 7.47] we
get that the manifolds C; are rank one homogeneous symmetric spaces. O
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