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Abstract

The object of this article is to study a torus action on a so called Berger
sphere. We also make some comments on polar actions on naturally reductive
homogeneous spaces. Finally, we prove a rigidity-type theorem for Rieman-
nian manifolds carrying a polar action with a fix point.
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1 Introduction.

In a generic Riemannian manifold (M, g) there are neither Killing vector fields (i.e.
infinitesimal isometries) nor non trivial totally geodesic submanifolds. The concept
of polar actions is a good example where both objects come together nicely. A Lie
subgroup of isometries G ⊂ I(M, g) acts polarly on (M, g) if there exists a con-
nected closed submanifold Σ meeting all G -orbits orthogonally. Notice that the
sections Σ are totally geodesic submanifolds of (M, g) . So, both Killing vector
fields and totally geodesic submanifolds fit together in the setting of polar actions.
Polar actions have been considered by several authors, see for example [6],[10], [1].

Let G act polarly on (M, g) and let g̃ be another metric on M . Of course, G does
not act isometrically on (M, g̃) in general. Even in case that the G -action is still
by isometries on (M, g̃) the change of the metric, usually, changes also the second
fundamental form of submanifolds of M . Thus, a totally geodesic submanifold of
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(M, g) is not in general a totally geodesic submanifold of (M, g̃) . Indeed, if the
G -action on (M, g̃) is still polar then there are no reasons to think that the old
section Σ should be still a section after changing the metric.

The first part of this paper is dedicated to give a proof (and some generalizations to
naturally reductive spaces) of a theorem stated in [5]. Namely, the S1 -action on a
Berger sphere (S3, Berger(ε)) given by θ.(z, w) := (z, eiθw) is polar if and only if
ε = 1 i.e. the Berger sphere is just a standard sphere. Our proof is a straightforward
corollary of the fact that there are no totally geodesic surfaces in a three dimensional
Berger sphere different from the standard one. Also we will show that there is, up
to isometry, just one locally polar action on a Berger sphere (S3, Berger(ε 6= 1)) ,
namely the diagonal action of the torus T 2 .

The proof in [5] is not correct since the authors make the confusion about old and
new section explained above.

It is interesting to note that the above non-polar S1 action on a fixed Berger sphere
(ε > 1) has fixed points p ∈ S3 . Thus, S1 acts also in any geodesic sphere around
a fixed point p . Since any geodesic sphere has dimension 2 , this action is locally
polar (actually polar) on any geodesic sphere around p . This contrasts with the
well-known fact that in Euclidean spaces (and real space forms) a G -action with
a fixed point p ∈ Rn is polar if and only if is polar in just one (and then in any)
sphere centered at p ∈ Rn .

Polar actions with fixed points in general homogeneous spaces were studied in [8].
In the last part of this article we give a generalization of Theorem 3 in [8]. Namely,
we get

Theorem 1.1 Let M be a homogeneous Riemannian manifold. Let G be a Lie
group of isometries acting polarly on M . If the G -action on M has a fixed point
and a section for the G -action is a compact locally symmetric space then, M is
locally symmetric.

Historical Remark. According to É. Cartan it was G. Ricci-Curbastro who first
observed the interplay between totally geodesic submanifolds and isometries. Let
us quote from Cartan’s book this théoréme remarquable [4, pp. 122, 107]:

S’il existe dans l’espace de Riemann une famille á un paramétre de plans, leurs
trajectories orthogonales etablissent entre les differents plans de la famille une cor-
respondence ponctuelle isométrique.
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2 Preliminary results.

Let M be a Riemannian manifold and let G ⊂ I(M) be a connected Lie sub-
group of isometries. The action of G on M is called polar if there exists a closed
embedded submanifold Σ ⊂ M , called a section, such that every G -orbit hits Σ
perpendicularly. The G -action is called locally polar if the distribution given by the
normal spaces to the principal orbits is integrable. A polar action is locally polar
but the converse it is not true. For a detailed discussion of both definitions see [7,
p. 6 and Appendix A.].

It is known that if G acts polarly then the section Σ is a totally geodesic sub-
manifold of M (see [11] or [1] for a detailed explanation). Indeed, note that if the
action is locally polar then the integral leaves of the normal distribution are totally
geodesic as a consequence of the Killing equation.

In [12] it is proved that the existence of a totally geodesic hypersurface in an ir-
reducible and simply connected naturally reductive homogeneous space M implies
that M has constant sectional curvature. As a consequence we get the following
proposition.

Proposition 2.1 Let M be a simply connected and irreducible naturally reductive
homogeneous space. Let X be a Killing vector field and let φX be the corresponding
monoparametric Lie group of isometries. If φX acts locally polar on M then M
has constant sectional curvature.

Let S2n−1 = {(z1, · · · , zn) ∈ Cn : |z1|2 + · · ·+ |zn|2 = 1} be the standard unit sphere
in Cn = R2n .

Let us now change the standard metric (i.e. the Riemannian structure) on the
sphere S2n−1 just by changing (by a positive constant ε ) the length of the Hopf
vector field H(z1, z2, · · · , zn) = (iz1, iz2, · · · , izn) . This new family of metrics
(S2n−1, Berger(ε)) on the sphere, are called Berger spheres.

Theorem 2.2 [3] The Berger spheres (S2n−1, Berger(ε)) are naturally reductive
Riemannian homogeneous spaces. Indeed, they are geodesic spheres (of a convenient
radius) in a complex space form.

We recall also the following proposition.

Proposition 2.3 A Berger sphere (S2n−1, Berger(ε)) has constant sectional cur-
vature if and only if ε = 1 i.e. the Berger sphere is just the standard one.

We summarize these results as follows.

Theorem 2.4 If the flow of a Killing vector field X 6= 0 of a Berger sphere
(S2n−1, Berger(ε)) acts locally polar then ε = 1 .
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3 Polar actions on Berger spheres.

In this section we give an application of the results of the previous section.

Let T n−1 = S1 × S1 × · · · × S1︸ ︷︷ ︸
n−1 times

act on S2n−1 ⊂ Cn , endowed with the standard

metric, in the following way

(eiθ2 , . . . , eiθn).(z1, z2, · · · , zn) := (z1, e
iθ2z2, · · · , eiθnzn) .

In other words, the action is diagonal, it fixes the first coordinate, and is just a
rotation of the other coordinates.

Then is easy to check that this action (by isometries) is polar and a section is given
by:

Σ := S2n−1
⋂
{(z1, z2, · · · , zn) ∈ Cn : Im(z2) = Im(z3) = · · · = Im(zn) = 0}.

Theorem 3.1 Let ε > 0 be a real number. If the above T n−1 -action is locally
polar on (S2n−1, Berger(ε)) then ε = 1 , i.e. the action is (locally) polar just on the
standard sphere.

Proof. Let σ ∈ U(n) be the diagonal matrix σ := diag(1, 1,−1, · · · ,−1︸ ︷︷ ︸
n−2 times

) . Then,

σ is an isometry of (S2n−1, Berger(ε)) . Thus, the set Fσ of fixed points of σ
is a totally geodesic submanifold of (S2n−1, Berger(ε)) . Indeed, it is not difficult
to check that Fσ = S2n−1

⋂
{(z1, z2, 0, 0, · · · , 0) ∈ Cn} . Also note that the induced

Riemannian metric on Fσ is just a Berger sphere i.e. Fσ = (S3, Berger(ε)) . Finally,
note that the torus T n−1 leaves Fσ invariant and the induced action is exactly the
S1 -action on S3 given by (z1, e

iθ2z2) .
If the torus T n−1 acts locally polar on (S2n−1, Berger(ε)) then the S1 -action is
also locally polar on Fσ = (S3, Berger(ε)) . Thus, by Theorem 2.4 it follows that
ε = 1 as we claim. 2

Up to conjugation, the torus T 2 = diag(eiθ1 , eiθ2) is the unique Lie subgroup of
isometries of (S3, Berger(ε 6= 1)) which is not transitive on S3 and acts with
codimension 1 . So, we get the following theorem.

Theorem 3.2 On a Berger sphere (S3, Berger(ε 6= 1)) there is just one locally
polar action, up to isometry. Namely, the action of the torus T 2 given by diagonal
multiplication.
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4 Polar actions with fixed points.

In [8] the authors studied G -actions with fixed points and they proved the following
theorem.

Theorem 4.1 [8, Theorem 3] Let M be a compact Riemannian homogeneous space.
Let G be a compact Lie group acting on M isometrically and polarly; if the G -
action on M has a fixed point and the section for the G -action is flat or a rank
one symmetric space then M is a locally symmetric.

Remark 4.2 Notice that our Theorem 2.4 for n = 2 follows also from the above
theorem. Indeed, a section for the S1 -actions is a totally geodesic homogeneous
submanifold of dimension 2 (i.e. a symmetric space of rank one or a flat surface).
This forces the Berger sphere to be locally symmetric and this occurs just when
ε = 1 .

Proof of Theorem 1.1 Let p ∈ M be a fixed point of the G -action. Then, it is
standard to see that any geodesic γ(t) passing through p is contained in a section.
Since sections are compact symmetric spaces any geodesic is contained in a compact
flat. Thus, M is a compact Riemannian homogeneous space all of whose geodesics
are contained in a compact flat. So we can apply [9] to get that the universal cov-

ering M̃ splits as M̃ = Rn × C1 × · · · × Ck × S , where S is a symmetric space
and the manifolds Cl are manifolds all of whose geodesics are closed. Since M̃ is
homogeneous any factor Cl is homogeneous too. Then, from [2, pp. 194, 7.47] we
get that the manifolds Cl are rank one homogeneous symmetric spaces. 2
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