3,317 research outputs found

    Methodology for tidal turbine representation in ocean circulation model

    Get PDF
    The present method proposes the use and adaptation of ocean circulation models as an assessment tool framework for tidal current turbine (TCT) array layout optimization. By adapting both momentum and turbulence transport equations of an existing model, the present TCT representation method is proposed to extend the actuator disc concept to 3-D large-scale ocean circulation models. Through the reproduction of experimental flume tests and grid dependency tests, this method has shown its numerical coherence as well as its ability to simulate accurately both momentum and turbulent turbine-induced perturbations in both near and far wakes in a relatively short period of computation time. Consequently the present TCT representation method is a very promising basis for the development of a TCT array layout optimization tool

    Integrated Numerical Modelling System for Extreme Wave Events at the Wave Hub Site

    Get PDF
    This paper examines an extreme wave event which occurred during a storm at the Wave Hub site in 2012. The extreme wave of 9.57 m height was identified from a time series of the heave data collected by an Oceanor Seawatch Mini II Buoy deployed at the site. An energy density spectrum was derived from this time series and then used to drive a physical model, which represents the extreme wave at 1:20 scale in Plymouth University’s new COAST Lab. The NewWave technique was used to define the input to the physical model. The experiment is reproduced in a numerical wave tank using the fully nonlinear CFD library OpenFOAM® and the wave generation toolbox waves2Foam. Results are evaluated, and issues regarding the predictions of a numerical model that is driven by the NewWave input signal are discussed. This study sets the basis for further research in coupling field data, physical modelling and numerical modelling in a more efficient and balanced way. This will lead to the new approach of composite modelling that will be implemented in future work

    Harmonic Maa{\ss}-Jacobi forms of degree 1 with higher rank indices

    Full text link
    We define and investigate real analytic weak Jacobi forms of degree 1 and arbitrary rank. En route we calculate the Casimir operator associated to the maximal central extension of the real Jacobi group, which for rank exceeding 1 is of order 4. In ranks exceeding 1, the notions of H-harmonicity and semi-holomorphicity are the same.Comment: 28 page

    Ultraproducts of measure preserving actions and graph combinatorics

    Get PDF
    Ultraproducts of measure preserving actions of countable groups are used to study the graph combinatorics associated with such actions, including chromatic, independence and matching numbers. Applications are also given to the theory of random colorings of Cayley graphs and sofic actions and equivalence relations

    Wave and Tidal Controls on Embayment Circulation and Headland Bypassing for an Exposed, Macrotidal Site

    Get PDF
    Headland bypassing is the transport of sediment around rocky headlands by wave and tidal action, associated with high-energy conditions and embayment circulation (e.g., mega-rips). Bypassing may be a key component in the sediment budget of many coastal cells, the quantification of which is required to predict the coastal response to extreme events and future coastal change. Waves, currents, and water levels were measured off the headland of a sandy, exposed, and macrotidal beach in 18-m and 26-m depths for 2 months. The observations were used to validate a Delft3D morphodynamic model, which was subsequently run for a wide range of scenarios. Three modes of bypassing were determined: (i) tidally-dominated control during low–moderate wave conditions [flux O (0–102 m3 day−1)]; (ii) combined tidal- and embayment circulation controls during moderate–high waves [O (103 m3 day−1)]; and (iii) multi-embayment circulation control during extreme waves [O (104 m3 day−1)]. A site-specific bypass parameter is introduced, which accurately (R2 = 0.95) matches the modelled bypass rates. A 5-year hindcast predicts bypassing is an order of magnitude less than observed cross-shore fluxes during extreme events, suggesting that bypassing at this site is insignificant at annual timescales. This work serves a starting point to generalise the prediction of headland bypassing

    The extreme 2013/2014 winter storms: Beach recovery along the southwest coast of England

    Get PDF
    publisher: Elsevier articletitle: The extreme 2013/2014 winter storms: Beach recovery along the southwest coast of England journaltitle: Marine Geology articlelink: http://dx.doi.org/10.1016/j.margeo.2016.10.011 content_type: article copyright: © 2016 The Authors. Published by Elsevier B.V

    NONLINEAR MODELS FOR MULTI-FACTOR PLANT NUTRITION EXPERIMENTS

    Get PDF
    Plant scientists are interested in measuring plant response to quantitative treatment factors, e.g. amount of nutrient applied. Response surface methods are often used for experiments with multiple quantitative factors. However, in many plant nutrition studies, second-order response surface models result in unacceptable lack of fit. This paper explores multi-factor nonlinear models as an alternative. We have developed multi-factor extensions of Mitscherlich and Gompertz models, and fit them to data from experiments conducted at the University of Nebraska-Lincoln Horticulture department. These data are typical of experiments for which conventional response surface models perform poorly. We propose design selection strategies to facilitate economical multi-factor experiments when second-order response surface models are unlikely to fit
    • …
    corecore