121 research outputs found

    CardioCam: Leveraging Camera on Mobile Devices to Verify Users While Their Heart is Pumping

    Get PDF
    With the increasing prevalence of mobile and IoT devices (e.g., smartphones, tablets, smart-home appliances), massive private and sensitive information are stored on these devices. To prevent unauthorized access on these devices, existing user verification solutions either rely on the complexity of user-defined secrets (e.g., password) or resort to specialized biometric sensors (e.g., fingerprint reader), but the users may still suffer from various attacks, such as password theft, shoulder surfing, smudge, and forged biometrics attacks. In this paper, we propose, CardioCam, a low-cost, general, hard-to-forge user verification system leveraging the unique cardiac biometrics extracted from the readily available built-in cameras in mobile and IoT devices. We demonstrate that the unique cardiac features can be extracted from the cardiac motion patterns in fingertips, by pressing on the built-in camera. To mitigate the impacts of various ambient lighting conditions and human movements under practical scenarios, CardioCam develops a gradient-based technique to optimize the camera configuration, and dynamically selects the most sensitive pixels in a camera frame to extract reliable cardiac motion patterns. Furthermore, the morphological characteristic analysis is deployed to derive user-specific cardiac features, and a feature transformation scheme grounded on Principle Component Analysis (PCA) is developed to enhance the robustness of cardiac biometrics for effective user verification. With the prototyped system, extensive experiments involving 25 subjects are conducted to demonstrate that CardioCam can achieve effective and reliable user verification with over 99% average true positive rate (TPR) while maintaining the false positive rate (FPR) as low as 4%

    A phage-displayed peptide recognizing porcine aminopeptidase N is a potent small molecule inhibitor of PEDV entry

    Get PDF
    Three phage-displayed peptides designated H, S and F that recognize porcine aminopeptidase N (pAPN), the cellular receptor of porcine transmissible gastroenteritis virus (TGEV) were able to inhibit cell infection by TGEV. These same peptides had no inhibitory effects on infection of Vero cells by porcine epidemic diarrhea virus (PEDV). However, when PEDV, TGEV and porcine pseudorabies virus were incubated with peptide H (HVTTTFAPPPPR), only infection of Vero cells by PEDV was inhibited. Immunofluorescence assays indicated that inhibition of PEDV infection by peptide H was independent of pAPN. Western blots demonstrated that peptide H interacted with PEDV spike protein and that pre-treatment of PEDV with peptide H led to a higher inhibition than synchronous incubation with cells. These results indicate direct interaction with the virus is necessary to inhibit infectivity. Temperature shift assays demonstrated that peptide H inhibited pre-attachment of the virus to the cells

    Secret key distribution leveraging color shift over visible light channel

    Get PDF
    Given the widely adoption of screen and camera in many electronic devices, the visible light communication (VLC) over screen-to-camera channel emerges as a novel short range communication technique in recent years. Active research explores various ways to convey messages over screen-camera channel, such as barcode and unobtrusive optical pattern. However, with the prevalence of LED screens of wide viewing angles and mobile devices equipped with high standard cameras, the threat of information leakage over screen-to-camera channel becomes in-negligible. Few studies have discussed how to ensure the security of data transmission over screen-to-camera channel. In this paper, we propose a secret key distribution system leveraging the unique color shift property over visible light channel. To facilitate such design, we develop a practical secret key matching based method to map the secret key into gridded optical patterns on screen, which can only be correctly recognized by the legitimate user through an accessible region and allow regular data stream transmission through valid grids. The proposed system is prototyped with off-the-shelf devices and validated under various experimental scenarios. The results show that our system can achieve high bit-decoding accuracy for the legitimate users while maintaining comparable data throughput as regular unobtrusive VLC systems with very low recovery accuracy of the encrypted data for the attackers

    Investigation and Assessment of the CFD for Horizontal Flow in the VHTR Core

    Get PDF
    A nuclear power station using gas as a cooling medium has attracted so much attention because it offers high efficiency and greater safety. For a nuclear station that operates at a very high temperature, a gas-cooled reactor is fueled by uranium, moderated by graphite, and customarily cooled by helium. Nevertheless, throughout the operation, the bypass flow might be a result of a change in graphite shape that is caused by neutron damage. Core bypass and cross flows are significant elements to consider since the cross gap set hurdles to the flow field that are capable of diverting sufficient amount of coolant from reactor core location and initiating a possible fuel overheating. However, there is a great need to sufficiently validate this method by carrying out a thorough evaluation based on working environment analysis. Comparing the computed results with the existing data from Groehn’s NHDA PMR-200 study was the only way to validate data. A model simulation was performed on a two-prismatic fuel block with a cross gap to examine the gaping size effect. Finally, the prediction methods for horizontal flow phenomena using a CFD technique and the field investigation results from the VHTR core were verified, and the identification of the horizontal flow behavior played a vital role in investigating the coolant velocity and pressure distribution in the horizontal gap

    Enabling Fast and Universal Audio Adversarial Attack Using Generative Model

    Full text link
    Recently, the vulnerability of DNN-based audio systems to adversarial attacks has obtained the increasing attention. However, the existing audio adversarial attacks allow the adversary to possess the entire user's audio input as well as granting sufficient time budget to generate the adversarial perturbations. These idealized assumptions, however, makes the existing audio adversarial attacks mostly impossible to be launched in a timely fashion in practice (e.g., playing unnoticeable adversarial perturbations along with user's streaming input). To overcome these limitations, in this paper we propose fast audio adversarial perturbation generator (FAPG), which uses generative model to generate adversarial perturbations for the audio input in a single forward pass, thereby drastically improving the perturbation generation speed. Built on the top of FAPG, we further propose universal audio adversarial perturbation generator (UAPG), a scheme crafting universal adversarial perturbation that can be imposed on arbitrary benign audio input to cause misclassification. Extensive experiments show that our proposed FAPG can achieve up to 167X speedup over the state-of-the-art audio adversarial attack methods. Also our proposed UAPG can generate universal adversarial perturbation that achieves much better attack performance than the state-of-the-art solutions.Comment: Publish on AAAI2

    WDR45, one gene associated with multiple neurodevelopmental disorders

    Get PDF
    The WDR45 gene is localized on the X-chromosome and variants in this gene are linked to six different neurodegenerative disorders, i.e., ss-propeller protein associated neurodegeneration, Rett-like syndrome, intellectual disability, and epileptic encephalopathies including developmental and epileptic encephalopathy, early-onset epileptic encephalopathy and West syndrome and potentially also specific malignancies. WDR45/WIPI4 is a WD-repeat beta-propeller protein that belongs to the WIPI (WD repeat domain, phosphoinositide interacting) family. The precise cellular function of WDR45 is still largely unknown, but deletions or conventional variants in WDR45 can lead to macroautophagy/autophagy defects, malfunctioning mitochondria, endoplasmic reticulum stress and unbalanced iron homeostasis, suggesting that this protein functions in one or more pathways regulating directly or indirectly those processes. As a result, the underlying cause of the WDR45-associated disorders remains unknown. In this review, we summarize the current knowledge about the cellular and physiological functions of WDR45 and highlight how genetic variants in its encoding gene may contribute to the pathophysiology of the associated diseases. In particular, we connect clinical manifestations of the disorders with their potential cellular origin of malfunctioning and critically discuss whether it is possible that one of the most prominent shared features, i.e., brain iron accumulation, is the primary cause for those disorders

    Transcriptome-wide identification and characterization of microRNAs in diverse phases of wood formation in Populus trichocarpa

    Get PDF
    We applied miRNA expression profiling method to Populus trichocarpa stems of the three developmental stages, primary stem (PS), transitional stem (TS), and secondary stem (SS), to investigate miRNA species and their regulation on lignocellulosic synthesis and related processes. We obtained 892, 872, and 882 known miRNAs and 1727, 1723, and 1597 novel miRNAs, from PS, TS, and SS, respectively. Comparisons of these miRNA species among different developmental stages led to the identification of 114, 306, and 152 differentially expressed miRNAs (DE-miRNAs), which had 921, 2639, and 2042 candidate target genes (CTGs) in the three respective stages of the same order. Correlation analysis revealed 47, 439, and 71 DE-miRNA-CTG pairs of high negative correlation in PS, TS, and SS, respectively. Through biological process analysis, we finally identified 34, 6, and 76 miRNA-CTG pairs from PS, TS, and SS, respectively, and the miRNA target genes in these pairs regulate or participate lignocellulosic biosynthesis-related biological processes: cell division and differentiation, cell wall modification, secondary cell wall biosynthesis, lignification, and programmed cell death processes. This is the first report on an integrated analysis of genome-wide mRNA and miRNA profilings during multiple phases of poplar stem development. Our analysis results imply that individual miRNAs modulate secondary growth and lignocellulosic biosynthesis through regulating transcription factors and lignocellulosic biosynthetic pathway genes, resulting in more dynamic promotion, suppression, or regulatory circuits. This study advanced our understanding of many individual miRNAs and their essential, diversified roles in the dynamic regulation of secondary growth in woody tree species

    Simultaneous Monitoring of Multiple People's Vital Sign Leveraging a Single Phased-MIMO Radar

    Full text link
    Vital sign monitoring plays a critical role in tracking the physiological state of people and enabling various health-related applications (e.g., recommending a change of lifestyle, examining the risk of diseases). Traditional approaches rely on hospitalization or body-attached instruments, which are costly and intrusive. Therefore, researchers have been exploring contact-less vital sign monitoring with radio frequency signals in recent years. Early studies with continuous wave radars/WiFi devices work on detecting vital signs of a single individual, but it still remains challenging to simultaneously monitor vital signs of multiple subjects, especially those who locate in proximity. In this paper, we design and implement a time-division multiplexing (TDM) phased-MIMO radar sensing scheme for high-precision vital sign monitoring of multiple people. Our phased-MIMO radar can steer the mmWave beam towards different directions with a micro-second delay, which enables capturing the vital signs of multiple individuals at the same radial distance to the radar. Furthermore, we develop a TDM-MIMO technique to fully utilize all transmitting antenna (TX)-receiving antenna (RX) pairs, thereby significantly boosting the signal-to-noise ratio. Based on the designed TDM phased-MIMO radar, we develop a system to automatically localize multiple human subjects and estimate their vital signs. Extensive evaluations show that under two-subject scenarios, our system can achieve an error of less than 1 beat per minute (BPM) and 3 BPM for breathing rate (BR) and heartbeat rate (HR) estimations, respectively, at a subject-to-radar distance of 1.6 m1.6~m. The minimal subject-to-subject angle separation is 40deg40{\deg}, corresponding to a close distance of 0.5 m0.5~m between two subjects, which outperforms the state-of-the-art

    Lewis Y Promotes Growth and Adhesion of Ovarian Carcinoma-Derived RMG-I Cells by Upregulating Growth Factors

    Get PDF
    Lewis y (LeY) antigen is a difucosylated oligosaccharide carried by glycoconjugates on the cell surface. Overexpression of LeY is frequently observed in epithelial-derived cancers and has been correlated to the pathological staging and prognosis. However, the effects of LeY on ovarian cancer are not yet clear. Previously, we transfected the ovarian cancer cell line RMG-I with the α1,2-fucosyltransferase gene to obtain stable transfectants, RMG-I-H, that highly express LeY. In the present study, we examined the proliferation, tumorigenesis, adhesion and invasion of the cell lines with treatment of LeY monoclonal antibody (mAb). Additionally, we examined the expression of TGF-β1, VEGF and b-FGF in xenograft tumors. The results showed that the proliferation and adhesion in vitro were significantly inhibited by treatment of RMG-I-H cells with LeY mAb. When subcutaneously inoculated in nude mice, RMG-I-H cells produced large tumors, while mock-transfected cells RMG-I-C and the parental cells RMG-I produced small tumors. Moreover, the tumor formation by RMG-I-H cells was inhibited by preincubating the cells with LeY mAb. Notably, the expression of TGF-β1, VEGF and b-FGF all increased in RMG-I-H cells. In conclusion, LeY plays an important role in promoting cell proliferation, tumorigenecity and adhesion, and these effects may be related to increased levels of growth factors. The LeY antibody shows potential application in the treatment of LeY-positive tumors
    corecore