24 research outputs found

    Sex-related biomarkers in cardiovascular and neurodegenerative disorders

    Get PDF
    Despite considerable advances in the treatment of human inflammatory diseases, such as cardiovascular and neurological disorders, they remain the leading cause of death in developed countries. From a clinical perspective, an active area of investigation focuses on the identification of diagnostic and prognostic biomarkers, because preventing events in those at risk of chronic inflammatory disease is likely to have a substantial impact on the overall public-health burden. The sex difference has not been considered previously as important in the evaluation of biomarkers of human diseases, twithstanding it is now ascertained that the severity of these disorders is correlated with sex hormones which modulate the inflammatory response. The aim of the present brief review is to report and comment the state of art regarding the sex-related biomarkers in cardiovascular and neurodegenerative disorders, focusing on those compounds showing potential prognosticand diagnostic values, and/or acting as indicators of the therapeutic treatment efficacy

    PRNP P39L variant is a rare cause of frontotemporal dementia in Iialian population

    Get PDF
    The missense P39L variant in the prion protein gene (PRNP) has recently been associated with frontotemporal dementia (FTD). Here, we analyzed the presence of the P39L variant in 761 patients with FTD and 719 controls and found a single carrier among patients. The patient was a 67-year-old male, with a positive family history for dementia, who developed apathy, short term memory deficit, and postural instability at 66. Clinical and instrumental workup excluded prion disease. At MRI, bilateral frontal lobe atrophy was present. A diagnosis of FTD was made, with a mainly apathetic phenotype. The PRNP P39L mutation may be an extremely rare cause of FTD (0.13%)

    Heme Oxygenase-1 and Brain Oxysterols Metabolism Are Linked to Egr-1 Expression in Aged Mice Cortex, but Not in Hippocampus

    Get PDF
    Throughout life, stress stimuli act upon the brain leading to morphological and functional changes in advanced age, when it is likely to develop neurodegenerative disorders. There is an increasing need to unveil the molecular mechanisms underlying aging, in a world where populations are getting older. Egr-1 (early growth response 1), a transcriptional factor involved in cell survival, proliferation and differentiation – with a role also in memory, cognition and synaptic plasticity, can be implicated in the molecular mechanism of the aging process. Moreover, Heme Oxygenase-1a (HO), a 32 kDa heat-shock protein that converts heme to iron, carbon monoxide and biliverdin, is a key enzyme with neuroprotective properties. Several in vitro and in vivo studies reported that HO-1 could regulate the metabolism of oxysterols, oxidation products of cholesterol that include markers of oxidative stress. Recently, a link between Egr-1 and HO-1 has been demonstrated in mouse lung cells exposed to cigarette smoke. In view of these data, we wanted to investigate whether Egr-1 can be implicated also in the oxysterol metabolism during brain aging. Our results show that Egr-1 expression is differently expressed in the cortex and hippocampus of old mice, as well as the oxysterol profile between these two brain areas. In particular, we show that the cortex experiences in an age-dependent fashion increasing levels of the Egr-1 protein, and that these correlate with the level of HO-1 expression and oxysterol abundance. Such a situation was not observed in the hippocampus. These results are further strenghtened by our observations made with Egr-1 KO mice, confirming our hypothesis concerning the influence of Egr-1 on oxysterol production and accumulation via regulation of the expression of HO-1 in the cortex, but not the hippocampus, of old mice. It is important to notice that most of the oxysterols involved in this process are those usually stimulated by oxidative stress, which would then represent the triggering factor for this mechanism

    Circulating miRNAs as Biomarkers for Neurodegenerative Disorders

    No full text
    Neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and frontotemporal dementias (FTD), are considered distinct entities, however, there is increasing evidence of an overlap from the clinical, pathological and genetic points of view. All neurodegenerative diseases are characterized by neuronal loss and death in specific areas of the brain, for example, hippocampus and cortex for AD, midbrain for PD, frontal and temporal lobes for FTD. Loss of neurons is a relatively late event in the progression of neurodegenerative diseases that is typically preceded by other events such as metabolic changes, synaptic dysfunction and loss, neurite retraction, and the appearance of other abnormalities, such as axonal transport defects. The brain’s ability to compensate for these dysfunctions occurs over a long period of time and results in late clinical manifestation of symptoms, when successful pharmacological intervention is no longer feasible. Currently, diagnosis of AD, PD and different forms of dementia is based primarily on analysis of the patient’s cognitive function. It is therefore important to find non-invasive diagnostic methods useful to detect neurodegenerative diseases during early, preferably asymptomatic stages, when a pharmacological intervention is still possible. Altered expression of microRNAs (miRNAs) in many disease states, including neurodegeneration, and increasing relevance of miRNAs in biofluids in different pathologies has prompted the study of their possible application as neurodegenerative diseases biomarkers in order to identify new therapeutic targets. Here, we review what is known about the role of miRNAs in the pathogenesis of neurodegeneration and the possibilities and challenges of using these small RNA molecules as a signature for neurodegenerative conditions

    Sex effect on presenilins expression in post-natal rat brain

    No full text
    Presenilin 1 and presenilin 2 are widely expressed during brain development. Several mutations in these proteins have been associated with autosomal-domi- nant inherited forms of Alzheimer disease. Their ex- pression is regulated by various cellular and ex- tracellular factors, which change with age and sex. Both age and sex are key risk factors for Alzheimer’s disease, but the issue of whether the expression of presenilins is influenced by the sex during early post- natal development of the brain has been poorly inves- tigated so far. In this study, we report that transcript levels of presenilins, and the subset of neurons ex- pressing these proteins in various brain areas of the developing post-natal brain are different in male and female rats, suggesting that their function(s) may contribute to sexual dimorphism in the brain, both at morphological and functional level

    Heme oxygenase-1 and brain oxysterols metabolism are linked to Egr-1 expression in aged mice cortex, but not in hippocampus

    Get PDF
    Throughout life, stress stimuli act upon the brain leading to morphological and functional changes in advanced age, when it is likely to develop neurodegenerative disorders. There is an increasing need to unveil the molecular mechanisms underlying aging, in a world where populations are getting older. Egr-1 (early growth response 1), a transcriptional factor involved in cell survival, proliferation and differentiation – with a role also in memory, cognition and synaptic plasticity, can be implicated in the molecular mechanism of the aging process. Moreover, Heme Oxygenase-1a (HO), a 32 kDa heat-shock protein that converts heme to iron, carbon monoxide and biliverdin, is a key enzyme with neuroprotective properties. Several in vitro and in vivo studies reported that HO-1 could regulate the metabolism of oxysterols, oxidation products of cholesterol that include markers of oxidative stress. Recently, a link between Egr-1 and HO-1 has been demonstrated in mouse lung cells exposed to cigarette smoke. In view of these data, we wanted to investigate whether Egr-1 can be implicated also in the oxysterol metabolism during brain aging. Our results show that Egr-1 expression is differently expressed in the cortex and hippocampus of old mice, as well as the oxysterol profile between these two brain areas. In particular, we show that the cortex experiences in an age-dependent fashion increasing levels of the Egr-1 protein, and that these correlate with the level of HO-1 expression and oxysterol abundance. Such a situation was not observed in the hippocampus. These results are further strenghtened by our observations made with Egr-1 KO mice, confirming our hypothesis concerning the influence of Egr-1 on oxysterol production and accumulation via regulation of the expression of HO-1 in the cortex, but not the hippocampus, of old mice. It is important to notice that most of the oxysterols involved in this process are those usually stimulated by oxidative stress, which would then represent the triggering factor for this mechanism

    A Sex Perspective in Neurodegenerative Diseases: microRNAs as Possible Peripheral Biomarkers

    No full text
    Sex is a significant variable in the prevalence and incidence of neurological disorders. Sex differences exist in neurodegenerative disorders (NDs), where sex dimorphisms play important roles in the development and progression of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. In the last few years, some sex specific biomarkers for the identification of NDs have been described and recent studies have suggested that microRNA (miRNA) could be included among these, as influenced by the hormonal and genetic background. Failing to consider the possible differences between males and females in miRNA evaluation could introduce a sex bias in studies by not considering some of these sex-related biomarkers. In this review, we recapitulate what is known about the sex-specific differences in peripheral miRNA levels in neurodegenerative diseases. Several studies have reported sex-linked disparities, and from the literature analysis miR-206 particularly has been shown to have a sex-specific involvement. Hopefully, in the near future, patient stratification will provide important additional clues in diagnosis, prognosis, and tailoring of the best therapeutic approaches for each patient. Sex-specific biomarkers, such as miRNAs, could represent a useful tool for characterizing subgroups of patients

    M2 Receptor Activation Counteracts the Glioblastoma Cancer Stem Cell Response to Hypoxia Condition

    No full text
    Glioblastoma multiforme (GBM) is the most malignant brain tumor. Hypoxic condition is a predominant feature of the GBM contributing to tumor growth and resistance to conventional therapies. Hence, the identification of drugs able to impair GBM malignancy and aggressiveness is considered of great clinical relevance. Previously, we demonstrated that the activation of M2 muscarinic receptors, through the agonist arecaidine propargyl ester (Ape), arrests cell proliferation in GBM cancer stem cells (GSCs). In the present work, we have characterized the response of GSCs to hypoxic condition showing an upregulation of hypoxia-inducible factors and factors involved in the regulation of GSCs survival and proliferation. Ape treatment in hypoxic conditions is however able to inhibit cell cycle progression, causing a significant increase of aberrant mitosis with consequent decreased cell survival. Additionally, qRT-PCR analysis suggest that Ape downregulates the expression of stemness markers and miR-210 levels, one of the main regulators of the responses to hypoxic condition in dierent tumor types. Our data demonstrate that Ape impairs the GSCs proliferation and survival also in hypoxic condition, negatively modulating the adaptive response of GSCs to hypoxi

    Thapsigargin affects presenilin-2 but not presenilin-1 regulation in SK-N-BE cells

    No full text
    Presenilin-1 (PS1) and presenilin-2 (PS2) are transmembrane proteins widely expressed in the central nervous system, which function as the catalytic subunits of g-secretase, the enzyme that releases amyloid-b protein (Ab) from ectodomain cleaved amyloid precursor protein (APP) by intramembrane proteolysis. Mutations in PS1, PS2, and Ab protein precursor are involved in the etiology of familial Alzheimer’s disease (FAD), while the cause of the sporadic form of AD (SAD) is still not known. However, since similar neuropathological changes have been observed in both FAD and SAD, a common pathway in the etiology of the disease has been suggested. Given that age-related deranged Ca2þ regulation has been hypothesized to play a role in SAD pathogenesis via PS gene regulation and g-secretase activity, we studied the in vitro regulation of PS1 and PS2 in the human neuron-like SK-N-BE cell line treated with the specific endoplasmic reticulum (ER) calcium ATPase inhibitor Thapsigargin (THG), to introduce intracellular Ca2þ perturbations and mimic the altered Ca2þ homeostasis observed in AD. Our results showed a consistent and significant down-regulation of PS2, while PS1 appeared to be unmodulated. These events were accompanied by oxidative stress and a number of morphological alterations suggestive of the induction of apoptotic machinery. The administration of the antioxidant N-acetylcysteine (NAC) did not revert the THG-induced effects reported, while treatment with the Ca2þ-independent ER stressor Brefeldin A did not modulate basal PS1 and PS2 expression. Collectively, these results suggest that Ca2þ fluctuation rather than ER stress and/or oxidative imbalance seems to play an essential role in PS2 regulation and confirm that, despite their strong homology, PS1 and PS2 could play different roles in AD

    Plasma microRNA pro!ling distinguishes patients with frontotemporal dementia from healthy subjects

    No full text
    Abstract The purpose of this study was to develop an easy and minimally invasive assay to detect a plasma miRNA profile in frontotemporal dementia (FTD) patients, with the final aim of discriminating between FTD patients and healthy controls (HCs). After a global miRNA profiling, significant downregulation of miR-663a, miR-502-3p, and miR-206 (p = 0.0001, p = 0.0002, and p = 0.02 respectively) in FTD patients was confirmed when compared with HCs in a larger case-control sample. Moreover, miR-663a and miR-502-3p showed significant differences in both genders, whereas miR-206, only in male subjects. To obtain a discriminating measure between FTD patients and HCs, we calculated a combined score of the 3 miRNAs by applying a Bayesian approach and obtaining a classifier with an accuracy of 84.4%. Moreover, for men, combined miRNA levels showed an excellent sensitivity (100%) and a good specificity (87.5%) in distinguishing FTD patients from HCs. All these findings open new hypotheses in the pathophysiology and new perspectives in the diagnosis of a complex pathology as FTD
    corecore