8 research outputs found

    Isotypes of ICIS and images of deformations of map germs

    Full text link
    We give a simple way to study the isotypes of the homology of simplicial complexes with actions of finite groups, and use it for Milnor fibers of \textsc{icis}. We study the homology of images of mappings ftf_t that arise as deformations of complex map germs f:(Cn,S)→(Cp,0)f:(\mathbb{C}^n,S)\to(\mathbb{C}^p,0), with n<pn<p, and the behaviour of singularities (instabilities) in this context. We study two generalizations of the notion of image Milnor number μI\mu_I given by Mond and give a workable way of compute them, with Milnor numbers of \textsc{icis}. We also study two unexpected traits when p>n+1p>n+1: stable perturbations with contractible image and homology of imft\text{im} f_t in unexpected dimensions. We show that Houston's conjecture, μI\mu_I constant in a family implies excellency in Gaffney's sense, is false, but we give a proof for the cases where it holds. Finally, we prove a result on coalescence of instabilities for the cases (n,p)=(1,2),(2,3)(n,p)=(1,2), (2,3), showing that it is false in general.Comment: 38 pages, 11 figure

    A note on complex plane curve singularities up to diffeomorphism and their rigidity

    Full text link
    We prove that, if two germs of plane curves (C,0)(C,0) and (C′,0)(C',0) with at least one singular branch are equivalent by a (real) smooth diffeomorphism, then CC is complex isomorphic to C′C' or to C′‾\overline{C'}. A similar result was shown by Ephraim for irreducible hypersurfaces before, but his proof is not constructive. Indeed, we show that the complex isomorphism is given by the Taylor series of the diffeomorphism. We also prove an analogous result for the case of non-irreducible hypersurfaces containing an irreducible component of zero-dimensional isosingular locus. Moreover, we provide a general overview of the different classifications of plane curve singularities

    Chaotic differential operators

    Full text link
    We give sufficient conditions for chaos of (differential) operators on Hilbert spaces of entire functions. To this aim we establish conditions on the coefficients of a polynomial P(z) such that P(B) is chaotic on the space lp, where B is the backward shift operator. © 2011 Springer-Verlag.This work was partially supported by the MEC and FEDER Projects MTM2007-64222, MTM2010-14909, and by GVA Project GV/2010/091, and by UPV Project PAID-06-09-2932. The authors would like to thank A. Peris for helpful comments and ideas that produced a great improvement of the paper's presentation. We also thank the referees for their helpful comments and for reporting to us a gap in Theorem 1.Conejero Casares, JA.; Martínez Jiménez, F. (2011). Chaotic differential operators. Revista- Real Academia de Ciencias Exactas Fisicas Y Naturales Serie a Matematicas. 105(2):423-431. https://doi.org/10.1007/s13398-011-0026-6S4234311052Bayart, F., Matheron, É.: Dynamics of Linear Operators, Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)Bermúdez T., Miller V.G.: On operators T such that f(T) is hypercyclic. Integr. Equ. Oper. Theory 37(3), 332–340 (2000)Bonet J., Martínez-Giménez F., Peris A.: Linear chaos on Fréchet spaces. Int. J. Bifur. Chaos Appl. Sci. Eng. 13(7), 1649–1655 (2003)Chan K.C., Shapiro J.H.: The cyclic behavior of translation operators on Hilbert spaces of entire functions. Indiana Univ. Math. J. 40(4), 1421–1449 (1991)Conejero J.A., Müller V.: On the universality of multipliers on H(C){\mathcal{H}({\mathbb {C}})} . J. Approx. Theory. 162(5), 1025–1032 (2010)deLaubenfels R., Emamirad H.: Chaos for functions of discrete and continuous weighted shift operators. Ergodic Theory Dyn. Syst. 21(5), 1411–1427 (2001)Devaney, R.L.: An introduction to chaotic dynamical systems, 2nd edn. In: Addison-Wesley Studies in Nonlinearity. Addison-Wesley Publishing Company Advanced Book Program, Redwood City (1989)Godefroy G., Shapiro J.H.: Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98(2), 229–269 (1991)Grosse-Erdmann K.-G.: Hypercyclic and chaotic weighted shifts. Stud. Math. 139(1), 47–68 (2000)Grosse-Erdmann, K.-G., Peris, A.,: Linear chaos. Universitext, Springer, New York (to appear, 2011)Herzog G., Schmoeger C.: On operators T such that f(T) is hypercyclic. Stud. Math. 108(3), 209–216 (1994)Kahane, J.-P.: Some random series of functions, 2nd edn. In: Cambridge Studies in Advanced Mathematics, vol. 5. Cambridge University Press, Cambridge (1985)Martínez-Giménez F., Peris A.: Chaos for backward shift operators. Int. J. Bifur. Chaos Appl. Sci. Eng. 12(8), 1703–1715 (2002)Martínez-Giménez F.: Chaos for power series of backward shift operators. Proc. Am. Math. Soc. 135, 1741–1752 (2007)Müller V.: On the Salas theorem and hypercyclicity of f(T). Integr. Equ. Oper. Theory 67(3), 439–448 (2010)Protopopescu V., Azmy Y.Y.: Topological chaos for a class of linear models. Math. Models Methods Appl. Sci. 2(1), 79–90 (1992)Rolewicz S.: On orbits of elements. Stud. Math. 32, 17–22 (1969)Salas H.N.: Hypercyclic weighted shifts. Trans. Am. Math. Soc. 347(3), 93–1004 (1995)Shapiro, J.H.: Simple connectivity and linear chaos. Rend. Circ. Mat. Palermo. (2) Suppl. 56, 27–48 (1998

    Linear chaos for the Quick-Thinking-Driver model

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00233-015-9704-6In recent years, the topic of car-following has experimented an increased importance in traffic engineering and safety research. This has become a very interesting topic because of the development of driverless cars (Google driverless cars, http://en.wikipedia.org/wiki/Google_driverless_car).Driving models which describe the interaction between adjacent vehicles in the same lane have a big interest in simulation modeling, such as the Quick-Thinking-Driver model. A non-linear version of it can be given using the logistic map, and then chaos appears. We show that an infinite-dimensional version of the linear model presents a chaotic behaviour using the same approach as for studying chaos of death models of cell growth.The authors were supported by a grant from the FPU program of MEC and MEC Project MTM2013-47093-P.Conejero, JA.; Murillo Arcila, M.; Seoane-Sepúlveda, JB. (2016). Linear chaos for the Quick-Thinking-Driver model. Semigroup Forum. 92(2):486-493. https://doi.org/10.1007/s00233-015-9704-6S486493922Aroza, J., Peris, A.: Chaotic behaviour of birth-and-death models with proliferation. J. Differ. Equ. Appl. 18(4), 647–655 (2012)Banasiak, J., Lachowicz, M.: Chaos for a class of linear kinetic models. C. R. Acad. Sci. Paris Série II 329, 439–444 (2001)Banasiak, J., Lachowicz, M.: Topological chaos for birth-and-death-type models with proliferation. Math. Models Methods Appl. Sci. 12(6), 755–775 (2002)Banasiak, J., Lachowicz, M., Moszyński, M.: Topological chaos: when topology meets medicine. Appl. Math. Lett. 16(3), 303–308 (2003)Banasiak, J., Moszyński, M.: A generalization of Desch–Schappacher–Webb criteria for chaos. Discret. Contin. Dyn. Syst. 12(5), 959–972 (2005)Banasiak, J., Moszyński, M.: Dynamics of birth-and-death processes with proliferation–stability and chaos. Discret. Contin. Dyn. Syst. 29(1), 67–79 (2011)Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Am. Math. Mon. 99(4), 332–334 (1992)Barrachina, X., Conejero, J.A.: Devaney chaos and distributional chaos in the solution of certain partial differential equations. Abstr. Appl. Anal. 457,019, 11 (2012)Bermúdez, T., Bonilla, A., Martínez-Giménez, F., Peris, A.: Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl. 373(1), 83–93 (2011)Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. Part F 2(4), 181–196 (1999)Brzeźniak, Z., Dawidowicz, A.L.: On periodic solutions to the von Foerster–Lasota equation. Semigroup Forum 78, 118–137 (2009)Chandler, R.E., Herman, R., Montroll, E.W.: Traffic dynamics: studies in car following. Op. Res. 6, 165–184 (1958)Chung, C.C., Gartner, N.: Acceleration noise as a measure of effectiveness in the operation of traffic control systems. Operations Research Center. Massachusetts Institute of Technology. Cambridge (1973)CNN (2014) Driverless car tech gets serious at CES. http://edition.cnn.com/2014/01/09/tech/innovation/self-driving-cars-ces/ . Accessed 7 Apr 2014Conejero, J.A., Rodenas, F., Trujillo, M.: Chaos for the hyperbolic bioheat equation. Discret. Contin. Dyn. Syst. 35(2), 653–668 (2015)DARPA Grand Challenge. http://en.wikipedia.org/wiki/2005_DARPA_Grand_Challenge#2005_Grand_Challengede Laubenfels, R., Emamirad, H., Protopopescu, V.: Linear chaos and approximation. J. Approx. Theory 105(1), 176–187 (2000)Desch, W., Schappacher, W., Webb, G.F.: Hypercyclic and chaotic semigroups of linear operators. Ergod. Theory Dyn. Syst. 17(4), 793–819 (1997)El Mourchid, S.: The imaginary point spectrum and hypercyclicity. Semigroup Forum 73(2), 313–316 (2006)El Mourchid, S., Metafune, G., Rhandi, A., Voigt, J.: On the chaotic behaviour of size structured cell populations. J. Math. Anal. Appl. 339(2), 918–924 (2008)El Mourchid, S., Rhandi, A., Vogt, H., Voigt, J.: A sharp condition for the chaotic behaviour of a size structured cell population. Differ. Integral Equ. 22(7–8), 797–800 (2009)Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York, 2000. With contributions by Brendle S., Campiti M., Hahn T., Metafune G., Nickel G., Pallara D., Perazzoli C., Rhandi A., Romanelli S., and Schnaubelt RGodefroy, G., Shapiro, J.H.: Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98(2), 229–269 (1991)Greenshields, B.D.: The photographic method of studying traffic behavior. In: Proceedings of the 13th Annual Meeting of the Highway Research Board, pp. 382–399 (1934)Greenshields, B.D.: A study of traffic capacity. In: Proceedings of the 14th Annual Meeting of the Highway Research Board, pp. 448–477 (1935)Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear Chaos. Universitext. Springer, London (2011)Herman, R., Montroll, E.W., Potts, R.B., Rothery, R.W.: Traffic dynamics: analysis of stability in car following. Op. Res. 7, 86–106 (1959)Helly, W.: Simulation of Bottleneckes in Single-Lane Traffic Flow. Research Laboratories, General Motors. Elsevier, New York (1953)Li, T.: Nonlinear dynamics of traffic jams. Phys. D 207(1–2), 41–51 (2005)Lo, S.C., Cho, H.J.: Chaos and control of discrete dynamic traffic model. J. Franklin Inst. 342(7), 839–851 (2005)Martínez-Giménez, F., Oprocha, P., Peris, A.: Distributional chaos for backward shifts. J. Math. Anal. Appl. 351(2), 607–615 (2009)Pipes, L.A.: An operational analysis of traffic dynamics. J. Appl. Phys. 24, 274–281 (1953

    A weak version of Mond's conjecture

    Full text link
    We prove that a map germ f:(Cn,S)→(Cn+1,0)f:(\mathbb{C}^n,S)\to(\mathbb{C}^{n+1},0) with isolated instability is stable if and only if μI(f)=0\mu_I(f)=0, where μI(f)\mu_I(f) is the image Milnor number defined by Mond. In a previous paper we proved this result with the additional assumption that ff has corank one. The proof here is also valid for corank ≥2\ge 2, provided that (n,n+1)(n,n+1) are nice dimensions in Mather's sense (so μI(f)\mu_I(f) is well defined). Our result can be seen as a weak version of a conjecture by Mond, which says that the Ae\mathcal{A}_e-codimension of ff is ≤μI(f)\le \mu_I(f), with equality if ff is weighted homogeneous. As an application, we deduce that the bifurcation set of a versal unfolding of ff is a hypersurface.Comment: 18 pages, 5 figure
    corecore