5,637 research outputs found

    Warrant for the payment of John Cabot’s pension, 22 February 1498

    Get PDF

    The Galactic Centre - A Laboratory for Starburst Galaxies (?)

    Full text link
    The Galactic centre - as the closest galactic nucleus - holds both intrinsic interest and possibly represents a useful analogue to star-burst nuclei which we can observe with orders of magnitude finer detail than these external systems. The environmental conditions in the GC - here taken to mean the inner 200 pc in diameter of the Milky Way - are extreme with respect to those typically encountered in the Galactic disk. The energy densities of the various GC ISM components are typically ~two orders of magnitude larger than those found locally and the star-formation rate density ~three orders of magnitude larger. Unusually within the Galaxy, the Galactic centre exhibits hard-spectrum, diffuse TeV (=10^12 eV) gamma-ray emission spatially coincident with the region's molecular gas. Recently the nuclei of local star-burst galaxies NGC 253 and M82 have also been detected in gamma-rays of such energies. We have embarked on an extended campaign of modelling the broadband (radio continuum to TeV gamma-ray), non- thermal signals received from the inner 200 pc of the Galaxy. On the basis of this modelling we find that star-formation and associated supernova activity is the ultimate driver of the region's non-thermal activity. This activity drives a large-scale wind of hot plasma and cosmic rays out of the GC. The wind advects the locally-accelerated cosmic rays quickly, before they can lose much energy in situ or penetrate into the densest molecular gas cores where star-formation occurs. The cosmic rays can, however, heat/ionize the lower density/warm H2 phase enveloping the cores. On very large scales (~10 kpc) the non-thermal signature of the escaping GC cosmic rays has probably been detected recently as the spectacular 'Fermi bubbles' and corresponding 'WMAP haze'.Comment: Invited talk to appear in Proceedings of IAU Symposium No. 284, 2011 (R.J. Tuffs & C.C. Popescu, eds.) `The Spectral Energy Distribution of Galaxies

    sPlot: a statistical tool to unfold data distributions

    Full text link
    The paper advocates the use of a statistical tool dedicated to the exploration of data samples populated by several sources of events. This new technique, called sPlot, is able to unfold the contributions of the different sources to the distribution of a data sample in a given variable. The sPlot tool applies in the context of a Likelihood fit which is performed on the data sample to determine the yields of the various sources.Comment: 27 pages, 8 figures, Accepted for publication in Nucl. Instr. Method

    A new simulation technique for RF oscillators

    Get PDF
    The study of phase-noise in oscillators and the design of new circuit topologies necessitates an efficient technique for the simulation of oscillators. While numerous approaches have been developed over the years e.g. [1-3], each has its own merits and demerits. In this contribution, an asymptotic numeric method developed in e.g. [4-5] is applied to the simulation of RF oscillators. The method is closely related to the stroboscopic and high-order averaging method in [6] and the Heterogeneous Multiscale Methods in [7]. The method is advantageous in that the same methodology can be applied for the simulation of general circuit problems involving highly oscillatory ordinary differential equations, partial differential equations and delay differential equations. Furthermore and counter-intuitively, its efficacy improves with increasing frequency, a feature that is very favourable in modern communications systems where operating frequencies are ever rising. Results for a CMOS oscillator will confirm the validity and efficiency of the proposed method

    Causal and stable reduced-order model for linear high-frequency systems

    Get PDF
    With the ever-growing complexity of high-frequency systems in the electronic industry, formation of reduced-order models of these systems is paramount. In this reported work, two different techniques are combined to generate a stable and causal representation of the system. In particular, balanced truncation is combined with a Fourier series expansion approach. The efficacy of the proposed combined method is shown with an example

    Symmetries and collective excitations in large superconducting circuits

    Full text link
    The intriguing appeal of circuits lies in their modularity and ease of fabrication. Based on a toolbox of simple building blocks, circuits present a powerful framework for achieving new functionality by combining circuit elements into larger networks. It is an open question to what degree modularity also holds for quantum circuits -- circuits made of superconducting material, in which electric voltages and currents are governed by the laws of quantum physics. If realizable, quantum coherence in larger circuit networks has great potential for advances in quantum information processing including topological protection from decoherence. Here, we present theory suitable for quantitative modeling of such large circuits and discuss its application to the fluxonium device. Our approach makes use of approximate symmetries exhibited by the circuit, and enables us to obtain new predictions for the energy spectrum of the fluxonium device which can be tested with current experimental technology

    THE OLD AND NEW DIVIDES OF PATENT LAW: FROM THE THEORY OF ANTEDATION TO DEFINING IMMEDIATELY ENVISAGEABLE LIMITED CLASSES

    Get PDF
    Recently, the United States Court of Appeals for the Federal Circuit (“Federal Circuit”) ruled on a patent case involving the application of pre-America Invents Act (“AIA”) antedation and the issue of when a genus of compounds is narrowly limited enough to anticipate an individual compound found within the genus.1 On appeal, this case generally discussed why the claimant’s anticipation and obviousness claims failed.2 While the entire Federal Circuit decision will be discussed, this Comment will discuss in greater depth the reasons why antedation is no longer applicable under the AIA, and the implications of the Federal Circuit’s decision to not set a standard for what defines a “limited class” under In re Petering
    • 

    corecore