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Abstract— With the ever growing complexity of high-frequency systems in the electronic industry, 

formation of reduced-order models of these systems is paramount.  In this contribution, two different 

techniques are combined to generate a stable and causal representation of the system.  In particular, 

Balanced Truncation is combined with a Fourier Series Expansion Approach.   The efficacy of the 

proposed combined method will be shown for several examples. 

 

Index Terms— High speed systems, Model Reduction, Fourier Series Expansion, Balanced 

Truncation 

 

I. INTRODUCTION 

In many branches of engineering, there is an ongoing need for efficient and effective model-order 

reduction techniques to counter the ever-increasing complexity of simulations.  From control system design 

to RF Integrated Circuit design and optimisation, the formation of reduced order models has, for a long 

time, been a focus of attention for research [1 and references therein].   

  One popular category of reduction methods for linear systems are Krylov subspace methods e.g. [2].  

These methods can handle large systems and are numerically efficient.  However, there is no error bound 

for them and they generate non-optimal models.  On the other-hand, Balanced Truncation and optimal 

Hankel model reduction [3] have global error bounds, but their associated computational requirements for 

their traditional implementations render them unsuitable for large-scale systems of order 105 or higher.  
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Some recent work in relation to Balanced Truncation for large-scale sparse systems has been done by 

Gugercin and Li [4] and for parallel model reduction of systems up to the size of O(104) by Benner et al. 

[5].  

 In this paper, we address the combination of two methods – the first is based on a Fourier Series 

Expansion [6].  The full-size model is simulated (or measurements can be taken from the system if a 

physical representation is present) and an intermediate model is formed using the Fourier Series Expansion.  

Guaranteed stability and causality is assured with this model.  The second stage of the technique is the 

application of standard Balanced Truncation [7] to further reduce the model and extract a compact model 

with a global error bound. 

 The proposed method is applied to two examples and results will highlight the efficiency and efficacy of 

the proposed method. 

 

II. FOURIER SERIES EXPANSION 

The Fourier Series Expansion was first introduced in [6] and is summarized here for completeness.  

Consider a large-scale linear system.  The goal is to determine a reduced-order model that can be used in 

subsequent design or analytical work.  Let the system be described by a transfer function )(ωH  obtained 

from simulation of the full system.  Suppose )(ωH  is nonzero for [ ]mωω ,0∈  where mω  is assumed to be 

large, but finite.  Also, assume . Then )()( * ωω −= HH )(Re ωH may be expanded in a Fourier series as 

follows, bearing in mind that it must be an even function of frequency. 
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where mωπωω /~ = . The expression in (1) describes an even function, defined for [ ]mm ωωω ,−∈    (i.e. 

[ ]ππω ,~ −∈ ).  Assuming causality or to enforce causality, the expression for )(Im ωH  may be obtained 

                                                                                                                                                                                                               
  



 

from (1) via the Kramers-Kronig relations (Hilbert transform) [9], [10]: 
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From (1) and (2), it follows that  
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for [ ]mm ωωω ,−∈ .  

The representation of the output in the time-domain may be obtained by an Inverse Fourier Transform. 

The output caused by an (arbitrary) input x(t) defined for t>0, (i.e. input signal )()( ttx θ  with Fourier image 

)(ωX  where )(tθ  is the unit step-function), is: 
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where . mkk ωπ /~
=

Therefore, once the set of FSE coefficients { }ka  is obtained from the frequency-domain simulations (i.e. 

from (1)), then the response for an arbitrary input may be readily determined from (4). 

 

  

To determine the set of FSE coefficients, let )(ωH  be obtained at a number of points, iω : 

1
)1( ,,2,1),(Re NiHF ii K== ω                   (5) 

                    (6) 2
)2( ,,2,1),(Im NiHF ii K== ω

where N1 is the number of real parts of the data points and N2 is the number imaginary parts of the data 



 

points. 

Then let a be the set of real coefficients [ ]TNaaaa K10= . 

Let iik kM ω~cos)1( = , iik kM ω~sin)2( −=  and mii ωπωω /~ =  where k=1,.., N. 

Then from (1) and (2): 

)1()1()1( EaMF +=                        (7) 

                                (8) )2()2()2( EaMF +=

)2,1(E  represent the errors that arise due to limiting the summation in (1)-(4) to a finite number of terms, N.  

(7) and (8) may be merged to yield: 
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and the minimal error, ETE, for (10) is achieved with:  
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III. FORMATION OF A REDUCED-ORDER STATE SPACE 

Once the vector of coefficients a is found from (11), the next step is to convert this representation into an 

intermediate discrete-time state-space model.  The approach employed follows from Gugercin and Willcox 

[11, 12].  However, in contrast to this work, they form an intermediate state-space model from the original 

state-space model using a Krylov technique for Fourier Model Reduction.  If the sampling time T of the 

intermediate discrete-time model is set as 
m

T
ω
πω == ~ , then: 

                    (12) rrrr DBAzICzH +−= −1
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Where: 

]0,,,,[ 32 Nr eeeA L= , , , ][ 1eBr = ],,,[ 21 Nr aaaC L= ][ 0aDr =  

ie  denotes the ith unit vector of  and 0 is a vector of zeros and  are the coefficients determined in 

(11).  . is the transfer function of the intermediate reduced system.  Because the state-space 

model in (12) is derived from a Fourier Series representation of the linear system, it is guaranteed to be 

stable.  However, the Fourier Series representation may contain redundant information so this is why at this 

point, Balanced Truncation may be applied to the representation in (12).  Because of the form of (12), the 

Hankel matrix is known explicitly: 
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The first k singular vectors of , corresponding to the k largest singular valuesΓ iσ of , are used to 

determine a projection matrix .  The discrete-time reduced system is then formed as: 
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where  
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The superscript T denotes the transpose of a matrix.  A continuous time reduced-order model can be formed 

using the inverse bilinear transform. 

                    

Note that use of Balanced Truncation yields the following expression for the error bound 
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Ĥ is the transfer function of the final reduced model. 

 

IV. EXAMPLES 

The first example considered is that of the two symmetric coupled dispersive strip-lines as described in 

[8].  The reduction procedure in the previous sections is applied to measurements or simulations from the 

original complex system. 

 

The red solid line in Fig. 1 shows the measured real part of the coefficient scattering of the lossy 

coupled lines. 
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Fig. 1 Real (S12) –measured data (red solid lines), reduced model (blue dashed lines) 

 

The blue dashed line shows the corresponding result obtained with the proposed reduction method.  The 



 

size of the reduced model is determined by the number of singular vectors selected to form the projection 

matrix .  In our work, we select vectors corresponding to the singular valueskV kσ  such 

that valuek >maxσσ . maxσ is the largest singular value and value is set by the user so as to achieve a 

certain level of accuracy.  For our simulations for this example, value=0.1.  As can be seen from the result 

in Fig. 1, a high degree of accuracy is obtained with a reduced-order state-space model of size k=29. 

 

The second example taken is the sample interconnect network in Fig. 1 of [6].    

  

The size of the reduced model is determined by selecting singular vectors to form the projection matrix 

 for which the corresponding singular valueskV kσ are such that 04.0max >σσ k .  

Fig. 2 compares the transient output from a full model and that from the reduced-order model of size 

k=10 obtained with the method detailed above.  As is evident, the result from the reduced model captures 

all of the essential behaviour. 
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Fig. 2 Transient results (input=black line) (red line=’measured’ output) (blue dashed line=output from 

reduced model) 

V. CONCLUSIONS 

The paper has proposed a two-stage method for forming a reduced-order model of large-scale systems.  

The method combines two techniques, a Fourier Series approach and Balanced Truncation.  The method 

achieves a high degree of accuracy and eliminates any redundant information from the reduced model and 

thus improves on computational efficiency. 
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