5 research outputs found

    Dissipative dynamics of western boundary currents

    Get PDF
    We investigate the steady barotropic circulation patterns driven by inflow-outflow boundary conditions on a rectangular β-plane domain. An inertial jet enters the domain in the southwest corner and a broad eastward outflow is prescribed at the eastern boundary. On the western wall there is no mass flux and no slip.With weak viscosity, ν the western boundary jet ?overshoots? northward, beyond the latitude band of the eastern outflow. As the viscosity is reduced the length of this overshoot increases as ν−2/3, before the jet gradually peels away from the western wall, plunges southward and eventually turns eastward. Away from the wall the current forms a damped stationary Rossby wave, as described by Moore in 1963.The initial northward overshoot and southward plunge is a distinct dynamical regime, and not merely the first and largest undulation of the Rossby wave. For instance the zonal length scale of the overshoot is just the Munk scale, (ν/β)1/3 and inertia, planetary vorticity and viscosity are all important at leading order in the dynamical balance as ν → 0. All of the streamlines pass through this dissipative region and most of the Lagrangian potential vorticity alterations occur here, rather than in the Rossby wave.The preceeding scenario applies only when the northern boundary is distant, so that the overshoot peels away from the western wall before striking the northwest corner of the domain. If the jet reaches the northern boundary it drives an inertial recirculating gyre in the corner

    The History, Relevance, and Applications of the Periodic System in Geochemistry

    Get PDF
    Geochemistry is a discipline in the earth sciences concerned with understanding the chemistry of the Earth and what that chemistry tells us about the processes that control the formation and evolution of Earth materials and the planet itself. The periodic table and the periodic system, as developed by Mendeleev and others in the nineteenth century, are as important in geochemistry as in other areas of chemistry. In fact, systemisation of the myriad of observations that geochemists make is perhaps even more important in this branch of chemistry, given the huge variability in the nature of Earth materials – from the Fe-rich core, through the silicate-dominated mantle and crust, to the volatile-rich ocean and atmosphere. This systemisation started in the eighteenth century, when geochemistry did not yet exist as a separate pursuit in itself. Mineralogy, one of the disciplines that eventually became geochemistry, was central to the discovery of the elements, and nineteenth-century mineralogists played a key role in this endeavour. Early “geochemists” continued this systemisation effort into the twentieth century, particularly highlighted in the career of V.M. Goldschmidt. The focus of the modern discipline of geochemistry has moved well beyond classification, in order to invert the information held in the properties of elements across the periodic table and their distribution across Earth and planetary materials, to learn about the physicochemical processes that shaped the Earth and other planets, on all scales. We illustrate this approach with key examples, those rooted in the patterns inherent in the periodic law as well as those that exploit concepts that only became familiar after Mendeleev, such as stable and radiogenic isotopes

    Continental crust generated in oceanic arcs

    No full text
    Thin oceanic crust is formed by decompression melting of the upper mantle at mid-ocean ridges, but the origin of the thick and buoyant continental crust is enigmatic. Juvenile continental crust may form from magmas erupted above intraoceanic subduction zones, where oceanic lithosphere subducts beneath other oceanic lithosphere. However, it is unclear why the subduction of dominantly basaltic oceanic crust would result in the formation of andesitic continental crust at the surface. Here we use geochemical and geophysical data to reconstruct the evolution of the Central American land bridge, which formed above an intra-oceanic subduction system over the past 70Myr. We find that the geochemical signature of erupted lavas evolved from basaltic to andesitic about 10Myr ago - coincident with the onset of subduction of more oceanic crust that originally formed above the GalĂĄpagos mantle plume. We also find that seismic P-waves travel through the crust at velocities intermediate between those typically observed for oceanic and continental crust. We develop a continentality index to quantitatively correlate geochemical composition with the average P-wave velocity of arc crust globally. We conclude that although the formation and evolution of continents may involve many processes, melting enriched oceanic crust within a subduction zone - a process probably more common in the Archaean - can produce juvenile continental crust
    corecore