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Dissipative dynamics of western boundary currents
by Paola CesSi,I,2 R. Vance Condie3 and W. R. Young2

ABSTRACT
We investigate the steady barotropic circulation patterns driven by inflow-outflow boundary

conditions on a rectangular tI-plane domain. An inertial jet enters the domain in the southwest
corner and a broad eastward outflow is prescribed at the eastern boundary. On the western wall
there is no mass flux and no slip.

With weak viscosity, v, the western boundary jet "overshoots" northward, beyond the latitude
band of the eastern outflow. As the viscosity is reduced the length of this overshoot increases as
V-2/3, before the jet gradually peels away from the western wall, plunges southward and
eventually turns eastward. Away from the wall the current forms a damped stationary Rossby
wave, as described by Moore in 1963.

The initial northward overshoot and southward "plunge" is a distinct dynamical regime, and
not merely the first and largest undulation of the Rossby wave. For instance the zonal length
scale of the overshoot is just the Munk scale, (vltI)I/3, and inertia, planetary vorticity and
viscosity are all important at leading order in the dynamical balance as v -+ O. All of the
streamlines pass through this dissipative region and most of the Lagrangian potential vorticity
alterations occur here, rather than in the Rossby wave.

The preceeding scenario applies only when the northern boundary is distant, so that the
overshoot peels away from the western wall before striking the northwest corner of the domain. If
the jet reaches the northern boundary it drives an inertial recirculating gyre in the corner.

1. Introduction
In 1963 Moore proposed a simple and influential model of the terminus of the

western boundary layer. In a subtropical gyre this is the northwest corner of the
circulation, where the interior Sverdrup flow is to the east, and fluid that has been
carried northward in the western boundary layer must return to this interior. Using an
Oseen linearization about the eastward Sverdrup flow, Moore proposed that closure of
the mass flux is achieved by a circulation pattern which is essentially a damped
stationary Rossby wave. Pedlosky (1987) argues that the role of this undulation is to
increase the length of a streamline and allow sufficient time for the low values of
potential vorticity carried by the fluid leaving the boundary layer to diffuse out of the
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basin. In Pedlosky's interpretation the wave is analogous to a baffle that increases the
efficacy of weak diffusion.

Moore's study was in the context of the steady barotropic model of the wind driven
ocean circulation:

fowE
J(1/1, q) = H + /I\12q where u = Z x \11/1 and q == {3y + \121/1 (1.1)

(e.g. Hendershott, 1987; Pedlosky, 1987). Here 1/1 is the streamfunctioi1 for the
geostrophic part of the velocity, q is the quasigeotrophic potential vorticity, WE is the
Ekman pumping which is proportional to the wind-stress curl, v is the lateral eddy
viscosity and H is the layer thickness. The standard boundary conditions arc no mass
flux (1/1 = 0) and no-slip (an1/1 = 0 where n is the normal coordinate).

Despite the many idealizations in this model, and in Moore's study, it remains one of
the few serious theoretical attempts to understand how dissipation acting on the
general circulation balances the wind forcing. Pedlosky emphasizes this using the
dissipation integrals (see his Section 5.9). An equally informative diagnostic is the
global energy balance obtained by multiplying (1.1) by 1/1 and integrating over the area
of the basin. The result is

(1.2)

where r == \121/1 is the relative vorticity. The order of magnitude of the left-hand side
can be estimated using the interior Sverdrup balance, 1/1s - afowE/{3H where a is the
east-west length scale. The important point is that the production term on the left is
independent of v.

In the linear limit, when the forcing is weak or the viscosity is large, the western
boundary layer closure is that described by Munk (1950) with thickness

= (~)1/3
OM - {3 • (1.3)

In this limit the western boundary layer dissipates the energy input from the wind.
(Notice that the right-hand side of (1.2) is independent of v because in the boundary
layer r2

- 0;/ - /1-4/3 while the area of this region is proportional to OM _ vI/3.)
In the nonlinear or "inertial" limit, when the forcing is strong or the viscosity small,

the thickness of the boundary layer, in the region of westward interior flow, is the
inertial scale

_ (US)1/20, = -
{3 (1.4)
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found by Charney (1955) and Morgan (1956). Here Us is the maximum speed of the
westward Sverdrup flow impinging on the boundary layer. In this case, because the
inertial boundary layer thickness is independent of P, its contribution to the right-hand
side of (1.2) is not sufficient to balance the left. Of course, the inertial boundary layer
does not satisfy the no slip condition and so there is a viscous sublayer, of thickness ov«
Ob to fulfill this condition. For the moment the essential point is that Ov - pl/2 so that the
contribution of the viscous sublayer to the right-hand side of (1.2) is proportional to
p1/2, and is also incapable of balancing the source on the left. This emphasizes that the
primary role of the western boundary layer is to close the mass flux rather than to
satisfy the no slip condition and balance dissipation budgets.

To summarize: in the inertial limit of the steady barotropic model, straightforward
scale analysis shows that the boundary layers are not strong enough to dissipate the
energy pumped into the large scale flow by the wind. Pedlosky reaches an analogous
conclusion based on his consideration of the potential vorticity balance within a region
enclosed by a streamline. He argues that the dissipation deficit is balanced in the
damped stationary Rossby wave. It turns out that scale analysis based on the global
energy balance leads to identical results so that apparently a consistent scenario
emerges: the damped stationary Rossby wave is a localized region of dissipative
activity required to balance both the potential vorticity and energy budgets in the
barotropic circulation model. It is also the site of alterations in potential vorticity from
the low values characteristic of where fluid entered the western boundary layer, to the
higher values of the northern Sverdrup interior.

Moore's model has been questioned by a number of authors and we present a
detailed summary of their objections below. It is now clear from these publications that
either a northern wall, or a strong northern gyre, prevents the formation of a damped
stationary Rossby wave. Instead enhanced dissipation is associated with an inertial
recirculation (Cessi et al.. 1987) whose strength increases as viscosity decreases.
However an important conclusion of this article is that if a boundary current somehow
separates far away from the northern wall then the resulting flow exhibits Moore's
damped Rossby wave far away from the western boundary. In the present article we
induce separation in a steady barotropic regional model by simply imposing an
eastward interior flow well south of the northern boundary. The distinction between
recirculation and Moore's scenario is important from an observational perspective
because the recirculation gyres significantly augment the eastward transport of the
separated boundary current, while the train of damped Rossby waves does not.

In collaboration with G.R. Ierley we have also seen examples of separation in eddy
resolving general circulation models. In these simulations instabilities in the western
boundary layer (e.g. lerley and Young, 1990) cause the current to leave the coast south
of the northern gyre boundary. The mean fields show an unmistakable damped
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stationary Rossby wave as the fluid leaving the boundary current flows back into the
Sverdrup interior. Separation induced by time dependent instabilities is beyond the
scope of the present article. Instead we confine attention to the damped stationary
Rossby wave in its most elementary setting: the steady barotropic model.

a. Criticism oj Moore's scenario. Objections to Moore's scenario first appeared in
1964 when its mathematical foundation was questioned by I1'in and Kamenkovich.
This interesting study took as its point of departure an ordinary differential equation
which is obtained by expanding the stream-function in a Taylor series about either the
northern or the southern boundary of the basin. For instance suppose that the basin is a
rectangle 0 < x < a and 0 < y < b and the Ekman pumping has the standard form for a
subtropical gyre

(1.5)

where the positive constant, W, is an Ekman pumping scale. The corresponding interior
Sverdrup solution is

JoW . ('lTY)1/;s(x, y) = {3H (a - x) sm b ( 1.6)

where we recall that Us is the maximum speed of the zonal Sverdrup flow-see (1.4). If
the expansion is pivoted on the northern boundary one introduces y == b - y and then

(1. 7)

Substituting this into (1.1) gives the leading order equation

(1.8)

where the constant of integration on the right-hand side was determined by matching
to the Sverdrup interior in (1.6) and (J = + 1 if the expansion is about the northern
boundary as in (1.7), and (J = -1 if about the southern. This is the "parametric
model"-so called because it assumes that the y dependence of the boundary layer is
weak or parametric. More details are given by Moore (1963), I1'in and Kamenkovich
(1964), Ierley and Ruehr (1986), Ierley (1987) and MaJlier (1989). This last reference
discusses the higher order corrections ¢2 etc.

We emphasize that the parametric form in (1.7) assumes the existence of a wall at
y = b so that 1/;(x, b) = O. Conclusions based on this expansion do not apply to "open
boxes" in which the flow is not constrained by such a barrier. It is precisely in this
"open" geometry in which we find the Rossby wave.

Moore's Oseen approximation amounts to linearizing (1.8) about the interior
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¢(x) "" Us + e(x)
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(1.9)

so that if quadratic terms are neglected then e satisfies a third order linear differential
equation. This equation has two oscillatory solutions which are damped as x -+ 00. The
implication is that the nonlinear equation (1.8) has a solution satisfying both the
boundary conditions at the western wall, ¢!(O) = ¢'!(O) = 0, and the matching
condition as x increases. The surprising conclusion of I1'in and Kamenkovich's
numerical study of the full nonlinear problem in (1.8) is that this is incorrect if W is
large enough and the expansion is around the northern wall (0- = I). That is, if the
forcing is sufficiently strong there is no solution of (1.8) in the outflow region which
simultaneously satisfies the boundary conditions at the wall and matching conditions
onto the Sverdrup interior.

In their study of the parametric model I1'in and Kamenkovich used no-slip
(¢'! (0) = 0) on the wall as a boundary condition. Ierley and Ruehr (1986) in a
comprehensive study of the solutions of (1.8) investigated both no slip and slip
(¢'{(O) = 0) boundary conditions. There are no important qualitative differences
between the two cases. In both cases if the forcing is sufficiently strong there is no
solution satisfying the boundary and matching conditions. For no slip the critical value
of the forcing in (1.8) is UrI = O.79130po~ while for slip UrI = 0.29657 po~.

Ierley (1987) studied this issue further using a regional model of the western
boundary layer. He solved (1.1) with WE = 0 in a rectangular domain (0 < x < a and
0< y < b) with an inflow-outflow condition on the eastern "wall," x = a = 100M' On
this open boundary he specified 1/;(a,y) = 1/;s(O,y) and q(a, y) = py + a;1/;s(O,y)
where 1/;s is defined in (1.6). On the other three walls the boundary conditions are 1/; =
a~1/;= 0 i.e., slip. There are two nondimensional parameters in this regional model.
First there is A4

(U 0)

which measures the strength of the forcing, and additionally there is a geometric ratio
a:

b b
a=----- a - 100M' (UI)

Ierley showed that the boundary layer approximation, ax » ay, is valid only when the

4. Adefined here is a negative number that approaches -00 as the forcing. Us. is increased. We adopt this
unusual definition so that our notation agrees with the convention Ierley used in discussing the nondimen-
sional form of (1.8). In that instance the one nondimensional parameter in the ordinary differential equation
is A = -aUs/fJo'i,. There are no solutions when a = I and Us is sufficiently large i.e. when A is negative.
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forcing is less than a certain critical value which is a function of the aspect ratio a. That
is, the solution has boundary layer character if

(1.12)

When this inequality is reversed the boundary layer approximation fails and a
recirculating gyre, rather than a damped stationary Rossby wave, appears in the
northwest corner of the domain. Ierley made contact with the parametric model by
demonstrating that as a -+ 00, Acritapproaches the value given by the parametric model
i.e. Acrit(oo) = -0.29657. This is further evidence against Moore's sccnario-a
complete solution of the partial differential equation does not exhibit the damped
undulation. (Actually in lerley's figures there are small spatial oscillations south of the
gyre but there is only one, or at most two, crests.)

We emphasize that in lerley's regional study the northern wall abuts the eastward
outflow and suppresses the Rossby wave. In Section 2 we report calculations with this
same regional model in which the center of the eastern outflow is shifted far south of
the northern barrier. There is a stationary Rossby wave supported by the eastward
flow.

As further evidence of the role of a northern barrier in preventing the appearance of
a wave we note that numerical solutions of (1.1) with the forcing function in (1.5)
reported by Boning (1986) and Cessi et al. (1987) clearly show a recirculating gyre in
the northwest corner of the basin. There is no damped stationary Rossby wave.
However in these calculations the boundary condition on the western wall is slip. Early
calculations by Bryan (1963) and Blandford (1971) used no slip. But by modern
standards these are rather strongly damped and it is difficult to support any firm
conclusions about the nonlinear limit with them. It is true however that Bryan's more
inviscid runs (for instance Fig. 5.11.1 in Pedlosky, 1987) exhibit both a small
recirculating gyre and damped stationary Rossby waves, with perhaps two oscillations.
A more recent and less viscous sequence of no slip calculations are those of Panteleev
(1985). His figures clearly illustrate the existence of a nonlinear inertial gyre in the
northwest corner of the basin. There is no extensive damped stationary Rossby wave
and in fact the time-averaged circulation pattern is qualitatively similar to Boning's
slip model.

Thus there appear to be no important qualitative differences between slip and no slip
models forced by a single gyre wind stress curl such as (1.5) and with a wall aty = b. In
both cases the dissipation required to satisfy the potential vorticity and energy budgets
takes place in an inertial gyre (and in its northern boundary layer). And this same
feature enhances the transport of the western boundary currents by an order of
magnitude above that required to balance the mass flux from the linear Sverdrup
interior; e.g., Cessi et al. (1987). In neither case is there any support for Moore's wave.
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The various restrictions associated with this conclusion should be noted. We are
considering a model that is

(i) quasigeostrophic and barotropic

(ii) steady

(iii) driven by a single gyre Ekman pumping, such as (1.5)

(iv) bounded to the north by a coast.

We accept the first two of these as the defining characteristics of an elementary and
widely studied class of ocean models that is still not completely understood. The second
two restrictions are less fundamental and in fact there is evidence in the literature that
removing these allows the development of the stationary Rossby wave and suppresses
recirculation. For instance Moro (1988) used an asymmetric, two gyre pattern of
Ekman pumping to force (1.1). In his calculations, the maximum Ekman pumping in
the subpolar gyre is about twice that in the subtropical gyre. Both slip and no slip
boundary conditions were studied. With either boundary condition a distinct train of
damped stationary Rossby waves develops at the boundary between the two gyres.
Moro concludes that the similarity between this calculation and Moore's model is
"only superficial." This is true in the sense that Moore based his argument on the
linearization of (1.8), and the derivation of this ordinary differential equation relies
crucially on (iii) and (iv) above. But it is easy to avoid these assumptions and directly
linearize (1.1) to obtain essentially the same results (e.g., Pedlosky, 1987). Moro does
not attempt to compare the results of his numerical model with Pedlosky's scale
analysis. Some rough calculations, based on estimating the wavelength from Moro's
figures, indicate that the train of undulations is probably the damped stationary Rossby
wave predicted by Moore. Specifically the estimated wavelength is consistent with
Moore and Pedlosky's value 27r(j/.

To summarize this review: in the inviscid limit of the steady, barotropic, wind driven
model there are two different circulation patterns that return the fluid from the western
boundary layer to the Sverdrup interior. There is the damped stationary Rossby wave,
described first by Moore and seen clearly in Moro's calculations, and there is the
inertial recirculation, exhibited in Boning's calculations and modelled theoretically by
Cessi et al. (1987). In the presence of a northern wall (or of a subpolar gyre whose
strength is comparable to the subtropical gyre) the Rossby wave pattern is suppressed
and gives way to the inertial gyre pattern.

2. A regional model

The regional model we use is shown schematically in Figure I and described in more
detail by Ierley (1987). Essentially it solves (1.1) using Newton's method. We take
WE = 0 and force the flow by imposing inflow-outflow boundary conditions on the sides
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\V=~ = 0
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Figure 1. A schematic of the regional model. The computational domain is b > y > O.The flow
in the southern region, 0> Y > -Y., is found from (1.8) with (J = -1. The result from this
ordinary differential equation is used to specify a dynamically consistent inflow along the line
y=O.

of a rectangular domain. The resulting steady solution may be unstable to time
dependent disturbances, but this issue is outside the scope of the present study.

On the southern boundary, y = 0, we impose the streamfunction and its second
derivative

(2.1)

where ¢\ is a solution of (1.8) with (J = -1. Thus the total transport flowing into the
domain is

(2.2)

The inflow velocity obtained from (2.1) is shown in Figure 2. In using the solution of
(1.8) as a boundary condition for the regional model we are envisaging the configura-
tion shown in Figure 1where in the southern region, - Y. <Y < 0, a uniform inflow, Us,
impinges on the western wall and drives a viscous-inertial boundary layer northwards.
The parametric model, (1.8), provides an exact solution of the equations of motion so
that it is not necessary to explicitly model the westward inflow with the regional model.
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Figure 2. Three examples of the northward velocity obtained from (2.1) and (1.8) with various
values of" in mks. In all cases Us = 0.0325 mks and Y. = 120.9 km so that 0, = 40.3 km and
vm«J< -. 3Us as" -. O.The outer inertial region in which (2.6) applies is evident.

Instead the computational domain of the regional model is 0 < y < b in which the
ou tflow is specified over a portion of the eastern, open boundary.

We originally experimented with analytic expressions for the southern boundary
condition, ""(x, 0), as alternatives to solving (1.8) (e.g., Condie, 1989). We discovered
that satisfactory reduction of residual error in the solution of the regional model
requires that the boundary condition satisfy certain constraints which can be deduced
from the equation of motion. For instance, Stewart (1964) noted that within the
context of the boundary layer approximation one has v""xxx(O, y) = -(3""(co, y). And
there are several other conditions on the boundary which can be deduced from the
equations of motion, especially if one assumes that r """"xx' Building all of these into an
analytic form is cumbersome and ultimately it was simplest, both conceptually and
practically, to use the solutions of (1.8) instead of analytic forms.

As a concrete example of a choice of parameters in (2.1) and (2.2) our "pivot" case is

(2.3)

for which the boundary layer length scales in (1.3) and (1.4), and the transport in (2.2),
are

0/ = 40.3 km, OM = 10.0 km and cI> = 3,930 m2s-l• (2.4)

The domain size in the pivot case is

0< x < a = 750 km and 0 < y < b = 1,300 km. (2.5)

Figure 2 shows the velocity profile obtained from numerical solution of (1.8). There is
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an outer inertial region in which

d4>\ UsY.vex 0) - y - - -- e-x/6,, -. dx - o[ ,
and an inner viscous sublayer of width

== (0~)1/2
0. o[ ,

(2.6)

(2.7)

which for the pivot is approximately 5 km.
On the western boundary we impose both no mass flux (1/; = 0) and no-slip (1/;x = 0).

On the northern boundary we impose no mass flux (1/; = 0) and slip (1/;yy = 0).
On the eastern wall we specify an outflow centered on Y < b. Specifically we use the

functional forms

and for the pivot

Y = 650 km and I = 290 km.

The zonal velocity corresponding to (2.8) is

(
y - Y) ~

u(a, y) = -1/;y(a, y) = Urnax sech2 -1- where Umax == 2/'

(2.8)

(2.9)

(2.10)

We anticipate the existence of a stationary Rossby wave supported by this eastward
zonal flow. According to Moore's scaling this wave has an inverse wavenumber of order

ru::
ORW== \fT'

For the pivot case Umax = 6.776 X 10-3 m S-l and 0RW = 18.4 km.
The second boundary condition at the eastern boundary is

"'xx(a, y) = O.

(2.11)

(2.12)

We choose ~ and / so that the shear, "'n' is weak and consequently on the eastern
boundary q "" (3y.

5. Equation (2.8) is approximate because we also included a term linear in y, with an exponentially small
coefficient, to ensure that 1/1 was continuous at the northeast and southeast corners. This is necessary because
cPt (0) in (2.1) differs from its asymptotic value, 4>,by an exponentially small term.
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Table 1. Parameters for the computations. In all cases {3= 2 x 10-11 mks and the domain size
is as in (2.5). We also take Y. = 30( so that o( = (~/3{3)1/3. The eastern outflow is always
given by (2.9) and (2.10).

v (mks) ~ (mks) P = (OM/ORW)3 Ol/OM 20~w/01- (km)

Run 1 20 3,930 0.1603 4.031 229.6
Run 2 40 3,930 0.3207 3.199 114.8
Run 3 160 15,720 0.1603 3.199 459.2
Run 4 15 3,930 0.1203 4.436 306.1

3. Results
a. An overview of the numerical results. Table I summarizes the parameters used in
four different solutions. The pivot is run 1 and is shown in Figure 3. There is an
unmistakable oscillation away from the wall. Immediately adjacent to the wall there is
a large amplitude northward "overshoot" followed by a southward "plunge." We argue
below that this first loop is a distinct dynamical regime, and not just the first and largest
undulation of the damped Rossby wave. For the moment we emphasize that the zonal
scale of this loop is 5M, while that of the damped wave in the interior is 5RW» 5M•

In Figure 4 v has been doubled. Both the "overshoot" and the "plunge" become less
pronounced as v is increased, and the wave does not extend as far east.

oo~

oo
~

ooco

>-0
o
CD

oo
N

160 300 460 600 760
X

oo~

oo~

ooco

>-0
o
CD

oov

oo
N

160 300 460 600 760
X

Figure 3. This figure shows the streamfunction and potential vorticity of the pivot case (run 1 in
Table 1). The damped stationary wave on the outflow is unmistakable and its eastward
penetration decreases when the viscosity is increased (Fig. 4). Near the wall a large amplitude
loop (the northward "overshoot" and the southward "plunge") is obtained.
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Figure 4. Shown are the streamfunction and potential vorticity of run 2 from Table 1. The
increase in viscosity from run 1 decreases both the amplitude of the first loop of the boundary
current and the eastward penetration of the stationary wave.

Figure 5 shows the streamfunction and potential vorticity of run 3 as soHdlines. In
run 3 the transport has been increased by a factor of four relative to that in run 1 and
the viscosity by a factor of eight. Thus OM and 0RW are larger by a factor of two, and
there is no longer good scale separation between the damped wave and the box. In
particular we believe that the eastern boundary condition is probably intrusive because
it forces the wave to satisfy a quantization condition at x = a.

Also shown in Figure 5 as a dashed line is the stream function and potential vorticity
from Figure 3. In anticipation of future remarks about the scales of the damped wave
we note that in Figure 5 0RW has been used to scale zonal lengths. Thus only the
westernmost 368 km of the domain from Figure 3 is shown in Figure 5.

Figure 6 shows the streamfunction and potential vorticity of run 4. We have already
noted in Figures 3 and 4 that decreasing v results in a larger "overshoot" before the
boundary current separates from the wall. In Figure 6 we see that if the jet reaches the
northern wall before separation it drives an inertial gyre in the corner. From our
experience with wind-driven models we anticipate that if v were decreased further the
recirculating gyre would become a dominant feature and expand in the zonal direction.
Moreover, as viscosity is reduced, the transport recirculated in this compact gyre
increases and eventually exceeds «1>. We have not been able to decrease diffusion beyond
v = 15 mks because already at this viscosity the damped Rossby wave reaches the
eastern wall and its wavelength is affected by a quantization condition. This could be
avoided by increasing the size of the basin and the resolution. Unfortunately Newton
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Figure 5. The solid curve is the stream function and potential vorticity corresponding to run 3. In
this figure the x-axis is scaled in units of 6RW' (For run 3 6RW = 36.8 Ian so that 20 6RW =
736 km '" a = 750 Ian.) The dashed curve is run 1 for which 20 6RW = 368 km.
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Figure 6. Shown are the streamfunction and potential vorticity of run 4 from Table 1. The
transport is the same as in Figure 3, but the decrease in viscosity increases the overshoot so
that the boundary current "finds" the northern wall and forms an inertial gyre.
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method requires the inversion of a matrix whose size increases as the square of the
number of Chebyshev polynomials in each direction. For run 4 we use 89 polynomials
in x and 51 in y so that the memory requirement is roughly 16 megawords. Further
increases in resolution are prohibitively expensive.

b. The boundary layer approximation and integral constraints. Because of the
evident disparity between the x and y scales in Figures 3 and 4 we use the boundary
layer approximation, q R> (3y + tfxx' In this case (1.1) with WE = 0 can be written as

(3.1)

and then integrated so that

(3.2)

where tJ>(y) == "-'(a, y) is given by (2.8). Eq. (3.2) can be put a more revealing form as

(3.3)

which is the y momentum equation at first order in the standard Rossby number
expansion. This form is useful because it is similar to the classic boundary layer
equation (with -(3¢(y) playing the role of an external pressure gradient) discussed for
instance in Batchelor (1967) and Schlichting (1979). Many of the results developed in
that context are applicable to (3.3), but the extra term (3tf has important consequences
such as the stationary Rossby wave in the earlier figures.

An important result, which helps us understand the numerical calculations, is
obtained by evaluating (3.2) at x = 0:

(3.4)

This is Stewart's (1964) constraint. It shows that the diffusive flux of potential vorticity
through the western boundary is known in terms of the imposed outflow on the eastern
open boundary. In the calculations shown in Figures 3 and 4 this result is satisfied very
accurately which is strong evidence in support of the boundary layer approximation in
(3.2).

The result in (3.4) is interpreted physically as a constraint on the potential vorticity
fluxes. Consider a control region defined by the area south of a particular latitude, y. It
is easy to see that the advective flux of potential vorticity through the southern
boundary, y = 0, into the control area vanishes. With no slip boundary conditions, the
advective flux of potential vorticity through the northern boundary, y, of this control
region IS

(3.5)



1990] Cessi et al.: Dissipative dynamics of western boundary currents 691

The advective flux out of the control region at the eastern boundary, x = a, is

(3.6)

The remaining flux into the control region is the diffusive flux through the western wall
and from (3.4) we see that the three nonzero fluxes sum to zero.

To complete this subsection we briefly obtain the momentum and energy fluxes from
(3.2). Integrating from x = 0 to x = a one has the momentum constraint

(3.7)

The first term is the divergence of the flux of meridional momentum. The second term,
proportional to (3, is the Corio lis torque on the ageostrophic part of the velocity. The
final term is the viscous stress on the wall.

The energy balance is obtained by multiplying (3.2) by v = 1/;x and then integrating
across the domain from x = 0 to x = a. The result is

(3.8)

The first term is the divergence of the energy flux, the second is the pressure work from
the boundary, and the final is the viscous dissipation.

c. Scaling of the Rossby wave regime. We now turn to some scaling arguments for the
flow in Figures 3 and 4. We distinguish between the interior damped wave and the loop
current immediately adjacent to the wall. We first discuss the wave and following
Moore and Pedlosky we adopt the following scaling

(1/;, cJ» = 4J(';", 4», (3.9)

In (3.9) I is the meridional scale of the eastern outflow in (2.8) and 0RW is defined in
(2.11). Suppressing most of the hats the nondimensional equation is

(3.10)

We believe that (3.9) is an appropriate choice of scales for the wavy region, far away
from the western wall. Thus there is only one controlling nondimensional parameter, v.
Other nondimensional parameters which might be inherited from the southern inflow,
such as OJ/OM' do not affect the structure of the wave. In support of this assertion we
show in Figure 5 a comparison of run 1 with 3 after rescaling with (3.9). The
coincidence of the contours is evidence that 0RW is the correct zonal length scale. This
confirms Moore's and Pedlosky's scaling argument in the region near the outflow.
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Figure 7. Superimposed on an expanded view of the western region of Figure 3 are five sections
used for model diagnostics.

d. Scaling of the loop current. In the vicinity of the wall diffusion is important and we
suggest that the following scaling is appropriate in this region:

Q~w ~ I
.L == I Q~ = {JI/V/3 = ,,2/3 .

Suppressing all the hats the nondimensional equation is

(3.12)

Implicit in (3.12) is the surprising result that all of the streamlines pass through the
viscous-inertial boundary layer of width 15M, even as v - O. Indeed for all the runs
examined we found that the first longitude where the meridional velocity changes sign
(section D in Figure 7) coincides very closely with 27rQM/.f3. This is just the location
predicted by the linear Munk solution (see Pedlosky, 1987), assuming that the mass is
returned in a Munk boundary layer. We emphasize that the solution is nonlinear and
departs strongly from the Munk solution in other respects.

In summary, we suggest that the scaling in (3.9) is appropriate far away from the
wall while the scaling in (3.11) applies next to the wall. Notice that (3.12) contains no
parameters, so that the scaling (3.11) is "canonical." As long as the meridional scale of
the loop, .L, is much larger than the scale of the outflow, I, the {J-viscous-inertial
balance (3.12) obtains near the western boundary. For our pivot run the ratio .L/I is
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about 4. The other limit, L « /, is the well known Munk solution, in which inertia is
negligible.

We emphasize that these are assertions about the inviscid limit, v -+ O. According to
the last relation in (3.11), as viscosity is reduced the length of the loop, L, increases so
there is a larger distance over which the small viscosity can act. In fact the area of the
loop is of order oML - v-1/3. Also the diffusion time across the loop scales as o~/v,
while the advection time through the loop is LoM/ifJ. The ratio of these two time scales
is independent of v.

Pedlosky suggested this peculiar type of singular limit might give the wave an
important dissipative role as v -+ O. Instead our numerical results suggest that most of
the dissipation occurs in the loop, rather than the wave. The wave does become weakly
damped as v -+ 0, but we believe that it is best regarded as a local phenomenon
resulting from meridional displacement of particles on a (j-plane. Potential vorticity
transformations take place in the loop, not the wave. In fact, even if the viscous flux of
potential vorticity in the wave is 0(1), a much larger amount, 0(v-2/3), is needed. This
is because as v -+ 0, both the length of the overshoot and that of the plunge increase as
v-2/3. Thus if one holds the center of the outflowing jet fixed at y = Yand reduces v
then eventually it will be necessary to move both the southern boundary farther south
and the northern wall farther north so that the loop does not recirculate against either
boundary. But the difference between inflowing and outflowing values of potential
vorticity on the same streamline must then also increase as v-2/3 and so must the
viscous flux through the streamline.

In Section 4 we provide more details about the potential vorticity transformations in
the loop versus the wave. Here we just remark that the large amplitude loop current
near the western boundary is a very efficient mechanism for producing Lagrangian
potential vorticity changes. High values of potential vorticity acquired in high latitudes
by the "overshoot" are then carried southward by the "plunge" and diffused into the
northward flowing portion of the current near the inflow region. Thus when fluid with
low q initially enters the domain at y = 0 there is a flux of high q from the wall and also
a flux of high q from the southward flowing branch of the loop current.

e. A remark on the overshoot. The "overshoot" is the northern part of the loop current
where ¢ = 0 and Stewart's constraint, (3.4), is simply V1/Ixxx(O, y) = O.Thus there is no
diffusive flux of potential vorticity through the wall in the overshoot region. Instead
diffusion acts only to transfer potential vorticity between the streamlines within the
loop. The overshoot must be detached from the wall, else Stewart's constraint would be
violated. This separation is not striking in Figures 3, 4 and 5, but is noticeable in the
expanded view in Figure 7.

Because the current is detached from the wall the vorticity at the wall is also small.
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Thus in the overshoot the momentum integral, (3.7), simplifies to

ay1a
v2 dx = - f31a

1/; dx < 0, (3.13)

so that the divergence of the momentum flux is balanced by the ageostrophic Coriolis
torques. Because the latter is negative the meridional velocity decreases and the
overshoot eventually terminates.

4. Potential vorticity transformations
Friction produces significant Lagrangian changes of potential vorticity as particles

pass through the domain: low values of q enter in the southwest corner and much higher
values leave on the eastern boundary. And while the net advective flux of potential
vorticity entering the domain at y = 0 vanishes, the advective flux leaving at x = a is

(4.1)

We noted in the discussion surrounding (3.4) that this advective flux is balanced by the
diffusive flux of potential vorticity through the western wall.

These earlier arguments showed how the global potential vorticity budget is bal-
anced, but did not explain how the outer streamlines, which initially absorb all of the
viscous flux from the western wall, transfer high potential values vorticity to the inner
streamlines.6

To visualize the potential vorticity changes which occur as fluid passes through the
regional model we use 1f;-q scatter plots along the five sections shown in Figure 7.
Figures 8 and 9 show a 1/;-q scatter plot for run 1. The solid curves are the entry and exit
relations and the points come from Sections A, B & C in Figure 8 and from Sections D
& E in Figure 9.

A surprising result is that on outer streamlines potential vorticity changes are
nonmonotonic. For instance at the top of the overshoot q is greater than the ultimate
exit value (see Section D in Fig. 9). Then as the streamline plunges southwards q
decreases, so that at the bottom of the first trough (Section E in Fig. 9) q is almost
equal to the ultimate exit value. There are only very small changes in q for the
remaining five or six visible oscillations in Figure 4.

In contrast, the potential vorticity on inner streamlines changes monotonically from
its low entry values to its ultimate high exit value. But the rapidity of these changes is
surprising. For instance in Figure 8 we see that at Section B, only 400 km north of the
inflow, the 1/;-q relation on the inner streamlines is no longer linear.

An obvious explanation for the non monotonic potential vorticity changes on outer
streamlines is that fluid on these paths must initially absorb all of the viscous flux from

6. By outer streamlines we mean 0 <.p < 4>/2 and by inner streamlines 4>/2 <.p < 4>.
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Figure 8. The solid curves are the t/;-q relations of the inflow and outflow. (The linear t/;-q
relation in the inflowing inertial boundary current is evident when t/; > 0.3 ~.) The broken
lines show the t/;-q relations of the three zonal sections from Figure 7. Note how even on
Section B, which is only 400 km north of the inflow, some of the inner streamlines have q
values in excess of the inflow.

the western boundary. But we are left with the puzzling observation of a very rapid rise
of q on the inner streamlines.

A more detailed diagnostic is shown in Figure 10, where potential vorticity, q,
planetary vorticity, {jy, and the diffusive flux v'ilq . n on specific streamlines are plotted
as a function of arclength, s, (n is the unit vector normal to the streamline). In
accordance with the scaling (3.11) we have normalized the diffusive flux with {3<1>, and
the arclength, s, with L The potential vorticity and the planetary vorticity are
normalized with {jb.

In Figure lOa the streamline is 1/; = 0.2cJ? and again we note that on this outer
streamline the potential vorticity (solid line) at the top of the overshoot exceeds the
final exit value. Most of the diffusive flux through the streamline takes place during the
northward ascent along the western boundary. The flux in the damped wave region is
negligible.

In Figure lOb we pick the inner streamline 1/; = 0.84cJ? Most of the diffusive flux
through this streamline occurs where the loop current flows southwards. In this region
the high values of potential vorticity carried southward from the peak of the overshoot
are juxtaposed with the low values of the inflow.

These diagnostics confirm that the largest potential vorticity transformations occur
in the loop current near the western boundary. The scaling in (3.11) and (3.12) shows
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Figure 9. The solid curves are the If;-q relations of the inflow and outflow. Section D passes
through the overshoot and shows that a substantial number of streamlines (If; < 0.64» have q
values in excess of their ultimate outflow values. Note also that on some outer streamlines,
such as If; < 0.14>,q has actually decreased between sections C and D. By Section E most
streamlines have q values very close to their exit values.

that in the loop inertia, viscosity and planetary vorticity all contend at leading order.
By contrast, in the wave region inertia and planetary vorticity approximately balance
so that potential vorticity is almost conserved.

5. Conclusions
A primary objective of this paper has been to demonstrate the existence of the

damped stationary Rossby wave and document the loop current regime. In the regional
numerical model a northward flowing inertial current enters the domain in the
southwest corner and separation is induced by specifying an outflow on the eastern
boundary, well south of the northern wall. Far from the western wall the flow exhibits
the damped stationary Rossby wave described by Moore. However, contrary to the
conclusions in Pedlosky (1987), most of the potential vorticity alterations occur at the
western boundary, and not in the wave. Taking v -+ 0 results in a peculiar singular
limit: immediately adjacent to the western wall we find a "loop current" with zonal
scale ~M - vl/3 and a meridional scale which increases as v-2/3• The ratio of the
diffusion time across the loop to the transit time through the loop is independent of vas
v -+ O. All the streamlines pass through this region. Thus weak viscosity results in
substantial Lagrangian changes in potential vorticity before fluid leaves the loop and
enters the wave.
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Because of the geometry of the loop the fluid entering the domain is diffusively
invaded by high potential vorticity from both the wall on the left and the loop current
on the right. This is an example of upstream influence mediated by viscosity, even in
the inviscid limit. The potential vorticity distribution in the southward flowing branch
of the loop is determined by the imposed outflow on the eastern wall, and by diffusive
interaction with the northward flowing branch. This information is communicated to
the entering fluid before the latitude band at which the outflow is imposed.

The loop current is an alternative regime to inertial recirculation through which
potential vorticity is transformed from the low values entering the domain to the high
values of the outflow. The main difference between the two regimes is that the former
does not produce increased transport. We believe that geometry is the main factor
determining whether recirculation or the loop current is realized. If the northward
boundary current comes in contact with a solid northern wall, or, presumably, with a
southward flowing current of comparable strength, then inertial recirculation is
obtained. When recirculation occurs its strength and size increase with decreasing v,
and potential vorticity transformations take place in the viscous layer between the gyre
and the northern wall.

The relevance of the viscous-inertial loop current to oceanic observations is unclear
because it may be unstable to time dependent perturbations. (The solutions in this
article were obtained using Newton's method and we can conclude nothing about their
stability as /J is decreased.) Nevertheless the loop current found here might capture
some of the dynamical processes taking place in southern ocean western boundary
currents, i.e. the East Australian Current and the Aghulas Current. The absence of a
(southern) wall, or of another western boundary current flowing in the opposite
direction, distinguishes these southern ocean currents from the Gulf Stream. In the
North Atlantic there is evidence from eddy resolving numerical simulations (Thomp-
son and Schmitz, 1989) that the interaction of the southwestward flowing Deep
Western Boundary Current with the Gulf Stream gives rise to inertial recirculation
both to the north and south of the separated Gulf Stream. Instead the East Australian
Current (Boland and Church, 1981) overshoots its latitude of separation in a highly
time dependent fashion and exhibits a train of nonpropagating damped Rossby waves
as it flows eastward across the Tasman Sea. In this system there is no counterflowing
boundary current, analogous to the Deep Western Boundary Current, and so there is
no inertial recirculation associated with the separated East Australia Current.

The Aghulas current system is another point of comparison complicated by the
geometry of the coastline: the boundary terminates at the tip of South Africa. We
speculate that the Aghulas retroflection is an example of an inertial-viscous overshoot
like that in the East Australian Current system and in Figure 3. The importance of
both viscosity and inertia in this region is supported by the simulations of Boudra and
Chassignet (1988) and this agrees with the balance we emphasized in the discussion
surrounding (3.13). In this bulk conservation equation for meridional momentum there
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is no viscous term yet viscosity has an essential role in distributing momentum and
vorticity across streamlines.
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