2 research outputs found

    Recoil momentum of an atom absorbing light in a gaseous medium and the Abraham-Minkowski debate

    Full text link
    We discuss a fundamental question regarding the Abraham-Minkowski debate about the momentum of light in a medium: If an atom in a gas absorbs a photon, what is the momentum transferred to it? We consider a classical model for the internal degrees of freedom of the absorbing atom, computing the absorbed energy and momentum using the Lorentz force law due to the microscopic electromagnetic fields. Each non-absorbing atom from the gas is treated as a dielectric sphere, with the set of atoms forming a linear, dielectric, non-magnetic, and non-absorbing medium with a refractive index nn close to one. Our numerical results indicate that if the atoms are classically localized, the average absorbed momentum increases with nn, but is smaller than Minkowski's momentum np0np_0, p0p_0 being the photon momentum in vacuum. However, experiments performed with Bose-Einstein condensates [Phys. Rev. Lett. 94\mathbf{94}, 170403 (2005)] are consistent with the atom absorbing Minkowski's momentum. We argue that there is no contradiction between these results since, in a Bose-Einstein condensate, the atoms are in a quantum state spatially superposed in a relatively large volume, forming a ``continuous'' medium. In this sense, the experimental verification of an atomic momentum recoil compatible with Minkowski's momentum would be a quantum signature of the medium state

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    No full text
    Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data
    corecore