1,953 research outputs found

    On angled bounce-off impact of a drop impinging on a flowing soap film

    Get PDF
    Small drops impinging angularly on thin flowing soap films frequently demonstrate the rare emergence of bulk elastic effects working in-tandem with the more common-place hydrodynamic interactions. Three collision regimes are observable: (a) drop piercing through the film, (b) it coalescing with the flow, and (c) it bouncing off the film surface. During impact, the drop deforms along with a bulk elastic deformation of the film. For impacts that are close-to-tangential, the bounce-off regime predominates. We outline a reduced order analytical framework assuming a deformable drop and a deformable three-dimensional film, and the idealization invokes a phase-based parametric study. Angular inclination of the film and the ratio of post and pre impact drop sizes entail the phase parameters. We also perform experiments with vertically descending droplets impacting against an inclined soap film, flowing under constant pressure head. Model predicted phase domain for bounce-off compares well to our experimental findings. Additionally, the experiments exhibit momentum transfer to the film in the form of shed vortex dipole, along with propagation of free surface waves. On consulting prior published work, we note that for locomotion of water-walking insects using an impulsive action, the momentum distribution to the shed vortices and waves are both significant, taking up respectively 2/3-rd and 1/3-rd of the imparted streamwise momentum. In view of the potentially similar impulse actions, this theory is applied to the bounce-off examples in our experiments, and the resultant shed vortex dipole momenta are compared to the momenta computed from particle imaging velocimetry data. The magnitudes reveal identical order (10710^{-7} N\cdots), suggesting that the bounce-off regime can be tapped as a simple analogue for interfacial bio-locomotion relying on impulse reactions

    Progress in Materials and Component Development for Advanced Lithium-ion Cells for NASA's Exploration Missions

    Get PDF
    Vehicles and stand-alone power systems that enable the next generation of human missions to the Moon will require energy storage systems that are safer, lighter, and more compact than current state-of-the- art (SOA) aerospace quality lithium-ion (Li-ion) batteries. NASA is developing advanced Li-ion cells to enable or enhance the power systems for the Altair Lunar Lander, Extravehicular Activities spacesuit, and rovers and portable utility pallets for Lunar Surface Systems. Advanced, high-performing materials are required to provide component-level performance that can offer the required gains at the integrated cell level. Although there is still a significant amount of work yet to be done, the present state of development activities has resulted in the synthesis of promising materials that approach the ultimate performance goals. This report on interim progress of the development efforts will elaborate on the challenges of the development activities, proposed strategies to overcome technical issues, and present performance of materials and cell components

    On the energy and baseline optimization to study effects related to the δ-phase (CP-/T-violation) in neutrino oscillations at a neutrino factory

    Get PDF
    In this paper we discuss the detection of CP- and T-violation effects in the framework of a neutrino factory. We introduce three quantities, which are good discriminants for a non-vanishing complex phase (δ) in the 3 × 3 neutrino mixing matrix: Δδ, ΔCP and ΔT. We find that these three discriminants (in vacuum) all scale with L/Ev, where L is the baseline and Ev the neutrino energy. Matter effects modify the scaling, but these effects are large enough to spoil the sensitivity only for baselines larger than 5000 km. So, in the hypothesis of constant neutrino factory power (i.e., number of muons inversely proportional to muon energy), the sensitivity on the δ-phase is independent of the baseline chosen. Specially interesting is the direct measurement of T-violation from the "wrong-sign" electron channel (i.e., the ΔT discriminant), which involves a comparison of the ve → vμ and vμ → ve oscillation rates. However, the vμ → ve measurement requires magnetic discrimination of the electron charge, experimentally very challenging in a neutrino detector. Since the direction of the electron curvature has to be estimated before the start of the electromagnetic shower, low-energy neutrino beams and hence short baselines, are preferred. In this paper we show, as an example, the exclusion regions in the Δm212-δ plane using the ΔCP and ΔT discriminants for two concrete cases keeping the same L/Ev ratio (730 km/7.5 GeV and 2900 km/30 GeV). We obtain a similar excluded region provided that the electron detection efficiency is ∼20% and the charge confusion 0.1%. The Δm212 compatible with the LMA solar data can be tested with a flux of 5 × 1021 muons. We compare these results with the fit of the visible energy distributions. © 2002 Elsevier Science B.V. All rights reserved

    A Summary on Progress in Materials Development for Advanced Lithium-ion Cells for NASA's Exploration Missions

    Get PDF
    Vehicles and stand-alone power systems that enable the next generation of human missions to the moon will require energy storage systems that are safer, lighter, and more compact than current state-of-the-art (SOA) aerospace quality lithium-ion (Li-ion) batteries. NASA is developing advanced Li-ion cells to enable or enhance future human missions to Near Earth Objects, such as asteroids, planets, moons, libration points, and orbiting structures. Advanced, high-performing materials are required to provide component-level performance that can offer the required gains at the integrated cell level. Although there is still a significant amount of work yet to be done, the present state of development activities has resulted in the synthesis of promising materials that approach the ultimate performance goals. This paper on interim progress of the development efforts will present performance of materials and cell components and will elaborate on the challenges of the development activities and proposed strategies to overcome technical issues

    Chern-Simons and Born-Infeld gravity theories and Maxwell algebras type

    Get PDF
    Recently was shown that standard odd and even-dimensional General Relativity can be obtained from a (2n+1)(2n+1)-dimensional Chern-Simons Lagrangian invariant under the B2n+1B_{2n+1} algebra and from a (2n)(2n)-dimensional Born-Infeld Lagrangian invariant under a subalgebra LB2n+1\cal{L}^{B_{2n+1}} respectively. Very Recently, it was shown that the generalized In\"on\"u-Wigner contraction of the generalized AdS-Maxwell algebras provides Maxwell algebras types Mm\cal{M}_{m} which correspond to the so called BmB_{m} Lie algebras. In this article we report on a simple model that suggests a mechanism by which standard odd-dimensional General Relativity may emerge as a weak coupling constant limit of a (2p+1)(2p+1)-dimensional Chern-Simons Lagrangian invariant under the Maxwell algebra type M2m+1\cal{M}_{2m+1}, if and only if mpm\geq p. Similarly, we show that standard even-dimensional General Relativity emerges as a weak coupling constant limit of a (2p)(2p)-dimensional Born-Infeld type Lagrangian invariant under a subalgebra LM2m\cal{L}^{\cal{M}_{2m}} of the Maxwell algebra type, if and only if mpm\geq p. It is shown that when m<pm<p this is not possible for a (2p+1)(2p+1)-dimensional Chern-Simons Lagrangian invariant under the M2m+1\cal{M}_{2m+1} and for a (2p)(2p)-dimensional Born-Infeld type Lagrangian invariant under LM2m\cal{L}^{\cal{M}_{2m}} algebra.Comment: 30 pages, accepted for publication in Eur.Phys.J.C. arXiv admin note: text overlap with arXiv:1309.006

    Generalized Poincare algebras and Lovelock-Cartan gravity theory

    Get PDF
    We show that the Lagrangian for Lovelock-Cartan gravity theory can be re-formulated as an action which leads to General Relativity in a certain limit. In odd dimensions the Lagrangian leads to a Chern-Simons theory invariant under the generalized Poincar\'{e} algebra B2n+1,\mathfrak{B}_{2n+1}, while in even dimensions the Lagrangian leads to a Born-Infeld theory invariant under a subalgebra of the B2n+1\mathfrak{B}_{2n+1} algebra. It is also shown that torsion may occur explicitly in the Lagrangian leading to new torsional Lagrangians, which are related to the Chern-Pontryagin character for the B2n+1B_{2n+1} group.Comment: v2: 18 pages, minor modification in the title, some clarifications in the abstract, introduction and section 2, section 4 has been rewritten, typos corrected, references added. Accepted for publication in Physic letters

    Advanced Materials and Component Development for Lithium-Ion Cells for NASA Missions

    Get PDF
    Human missions to Near Earth Objects, such as asteroids, planets, moons, liberation points, and orbiting structures, will require safe, high specific energy, high energy density batteries to provide new or extended capabilities than are possible with today s state-of-the-art aerospace batteries. The Enabling Technology Development and Demonstration Program, High Efficiency Space Power Systems Project battery development effort at the National Aeronautics and Space Administration (NASA) is continuing advanced lithium-ion cell development efforts begun under the Exploration Technology Development Program Energy Storage Project. Advanced, high-performing materials are required to provide improved performance at the component-level that contributes to performance at the integrated cell level in order to meet the performance goals for NASA s High Energy and Ultra High Energy cells. NASA s overall approach to advanced cell development and interim progress on materials performance for the High Energy and Ultra High Energy cells after approximately 1 year of development has been summarized in a previous paper. This paper will provide an update on these materials through the completion of 2 years of development. The progress of materials development, remaining challenges, and an outlook for the future of these materials in near term cell products will be discussed
    corecore