28 research outputs found

    "Barley stripe mosaic virus" en España: Ensayos preliminares

    Get PDF
    El "Barley Stripe Mosaic Virus" (BSMV), miembro tipo de los Hordeivirus, se detecta en trigo en la provincia de Lérida y en cebada de Valladolid, al parecer por primera vez en España. Se han estudiado por Microscopía Electrónica propiedades y características de la partícula, citología e inclusiones de las células afectadas e inmunología con antisueros específicos. La inoculación mecánica a sus huéspedes naturales (Hordeum vulgare, Triticumsp. y Avena sativa), a otras especies de gramíneas y a huespedes experimentales da una lista de huéspedes y una sintomatología coincidente. Se consigue una tasa elevada de transmisión a través de la semilla de plantas de trigo inoculadas mecánicamente. Se obtienen antisueros y se desarrollan tests inmunológicos que permitirán una amplia prospección de las variedades españolas de cereales. Se indica la presencia de infecciones conjuntas con Barley Yellow Dwarf Viru

    BIOFUMIGACIÓN Y BIOSOLARIZACIÓN EN EL CONTROL DEL ToMV: UNA BUENA ALTERNATIVA AL BROMURO DE METILO

    Get PDF
    Crop residues are often an important source of insects, mites and phytopathogenic agents avoiding their presence in the fi eld. Nevertheless, the process of composting in the soil by means of biofumigation and biosolarization can help to control these agents depending of some factors as temperature, time of treatment, implicated microorganisms and the kind of soil. This research deals about the use of biofumigation and biosolarization for the control of Tomato mosaic virus (ToMV) under controlled conditions in pots and 3 different doses of infected vegetal material with the virus were used. Cocopeat slabs infected with the virus were used, too. These growbags had been used during one year and the virus was detected on the remained roots. Both pots and growbags were placed in open or shut plastic bags and were treated at different temperatures during different periods of time. The treatment at 25 ºC was considered as biofumigation and the treatment at 45 ºC was considered as biosolarization. Since 4 weeks of treatment at 45 ºC was suffi cient to control ToMV in pots, biosolarization was more effective than biofumigation. 6 weeks of treatment at 25 ºC were necessary to control the virus. In growbags, 5 weeks of treatment at 45 ºC were not suffi cient to control the virus, but the percentage of infected plants was reduced and a greater development and premature fl owering period were observed. Biofumigation and biosolarization can be considered as alternative techniques for the use of Methyl Bromide for the control of phytopathogenic agents.Los restos de cosechas son a menudo portadores de insectos, ácaros y agentes de fi topatógenos, desaconsejando su presencia en campo. Sin embargo el proceso de compostaje en el interior del suelo mediante los procesos de biofumigación y biosolarización, favorecen el control de estos agentes en función de la temperatura, tiempo, microorganismos implicados, plantas empleadas y características del suelo. Este trabajo determinó, en condiciones controladas, la efi cacia de la biofumigación y biosolarización en el control del virus del mosaico del tomate en macetas empleando 3 dosis de material vegetal infectado con el virus y en mangas de fi bra de coco de un año de uso donde quedaban restos de raíces del cultivo anterior infectadas con el virus. Tanto las macetas como las mangas de fibra de coco fueron sometidas a diferentes tratamientos de embolsado, no embolsado y tiempo de tratamiento. Se consideró biofumigación al tratamiento con 25 ºC y biosolarización al tratamiento con 45 ºC. Los resultados obtenidos demuestran la eficacia de la biosolarización en el control del virus en macetas sobre la biofumigación; ya que tan solo 4 semanas de tratamiento fueron sufi cientes frente a las 6 semanas necesarias en la biofumigación. En las mangas de fibra de coco la biosolarización durante 5 semanas resultó ineficaz para el control del virus, pero se redujo el porcentaje de plantas infectadas y se observó un mayor desarrollo vegetativo y el adelanto en su fl oración. La biofumigación y biosolarización pueden ser consideradas como técnicas alternativas al uso del Bromuro de metilo en el control de agentes fitopatógenos

    Seed transmission of Pepino Mosaic Virus an efficacy of the tomato seed disinfection treatments

    Full text link
    [EN] Rates of seed transmission for Pepino mosaic virus (PepMV) were estimated in seedlings grown from seeds obtained from symptomatic tomato (Lycopersicon esculentum) fruits of plants naturally infected with the virus. The proportion of seeds infected with PepMV was at least 25% as estimated from enzyme-linked inummosorbent assay (ELISA) analysis of grouped seeds. The seeds from symptomatic fruits were planted, and seedlings at the cotyledon and transplant stage were assayed for PepMV by ELISA. Three of 168 seedlings grown from infected seeds were PepMV-positive, corresponding to a seed-to-seedling transmission rate of 1.84%. Various tomato seed treatments were evaluated for their ability to prevent seed transmission of PepMV. This virus was largely eradicated by immersing the seeds in 10% trisodium phosphate for 3 h. Although heat treatments of 24 h at 80 degrees C and 48 h at 74 degrees C eliminated PepMV in seedlings, these treatments did not eradicate the virus in whole seeds. The three treatments did not adversely affect seed germination. The results suggest that trisodium phosphate can be used to eradicate PepMV in tomato seed without hindering germination.Córdoba-Sellés, MDC.; García-Rández, A.; Alfaro Fernández, AO.; Jordá-Gutiérrez, C. (2007). Seed transmission of Pepino Mosaic Virus an efficacy of the tomato seed disinfection treatments. Plant Disease. 91(10):1250-1254. https://doi.org/10.1094/PDIS-91-10-125012501254911

    Implicaciones de los abejorros (Bombus spp.) en la dispersión del virus del mosaico del pepino dulce (Pepino Mosaic Virus) en cultivos de tomate

    Get PDF
    [SPA] Desde 1999 el virus del mosaico del pepino dulce (Pepino Mosaic Virus, PepMV) afecta el cultivo del tomate en varios países europeos. Produce abullonado, mosaicos y filiformismo en las hojas jóvenes y jaspeado y pardeamiento en los frutos. Se transmite fácilmente por contacto entre plantas y mecánicamente por las manipulaciones de las labores culturales (desbrotado, entutorado, etc.). Se han realizado ensayos para conocer las posibles implicaciones de los abejorros polinizadores en la dispersión del virus en los cultivos de invernadero, donde mayoritariamente se utilizan Bombus terrestris y B. canariensis. En primavera, a las 4 semanas de haber puesto plantas de tomate sanas en un invernadero comercial contaminado de PepMV y con abejorros, se contaminaron las primeras plantas y a las 7-8 semanas se habían contaminado todas, para niveles medios de l'l a 3'0 flores visitadas/plantas y semana. Mediante test ELISA con suero de PepMV se ha detectado el virus en las patas (con o sin polen), en la cabeza y en el abdomen de los abejorros, siendo en las patas y en el polen de las escopas donde más frecuentemente se ha detectado. Al inocular, en condiciones controladas, plantas de tomate con extractos del cuerpo (incluido el polen adherido) de los abejorros recolectados en invernaderos de tomate contaminados de PepMV, se obtuvieron infecciones y síntomas en más del 85% de los casos. No se conocen con exactitud los mecanismos de la transmisión que intervienen en la dispersión del virus por Bombus spp., ya que tampoco se conoce con precisión el comportamiento etológico de los abejorros en el cultivo del tomate, habiéndose puesto de manifiesto que pueden transportar partículas infectivas del PepMV.[ENG] Since 1999, Pepino Mosaic Virus (PepMV) is a new virus disease for tomato crops of several european countries. It produces mosaics and deformations on the leaves and mottled and brown fruits on infected tomato plants. It is easily transmitted by plant contact and mechanically by plant manipulation from cultural practices (staking and prunning plants, etc.). Assays have been carried out to determine the potential implications of bombus bees on the spread of the disease on greenhouse tomato crop where Bombus terrestris and B. canariensis were used. In spring, healthy plants were transplanted in a commercial greenhouse with PepMV infested plants and bombus bees used as pollinators. The first plants with PepMV symptoms were observed four weeks after transplant and after seven to eight weeks all plants were infested. Bombus bees were recorded to visit flowers on each plant 1.3-3.0 times a week on average. PeMV was detected by ELISA using PepMV antisera on legs (with and without pollen), head and abdomen of bombus bees. PeMV was detected more frequently on legs. When healthy tomato plants were inoculated with body extract of PepMV contaminated bombus bees more infections and symptoms were observed in more than 85% of the cases. The transmission processes implicated on virus spread by bombus bees are not well known, nor is it precisely bombus bees behaviour on tomato crops. In this work transmission of PepMV particles by bombus bees have been demonstrated.El trabajo se encuadra en el ámbito de actuación del proyecto de investigación AGL 2000-1651-C03-02 financiado por el Ministerio de Ciencia y Tecnología. Expresamos el agradecimiento a los productores de tomate, en particular a la empresa DURAN H08 y a los asociados a las cooperativas COARA y COEXMA, por su colaboración

    Turnip yellow mosaic virus in Chinese cabbage in Spain: Commercial seed transmission and molecular characterization

    Full text link
    [EN] Seed transmission of Turnip yellow mosaic virus (TYMV, genus Tymovirus) was evaluated in the whole seeds and seedlings that emerged from three commercial Chinese cabbage (Brassica pekinensis) seed batches. Seedlings in the cotyledon stage and adult plants were assayed for TYMV by DAS-ELISA and confirmed by RT-PCR. The proportion of whole seeds infected with TYMV was at least 0.15 %. The seeds of the three seed batches were grown in Petri dishes, and surveyed in the cotyledon stage in trays that contained a peat:sand mixture grown in greenhouses or growth chambers, which were analysed in the cotyledon and adult stages. The seed-to-seedling transmission rate ranged from 2.5 % to 2.9 % in two different seed batches (lot-08 and lot-09, respectively). Spanish isolates derived from turnip (Sp-03) and Chinese cabbage (Sp-09 and Sp-13), collected in 2003, 2009 and 2013 in two different Spanish regions, were molecularly characterised by analysing the partial nucleotide sequences of three TYMV genome regions: partial RNA-dependent RNA polymerase (RdRp), methyltransferase (MTR) and coat protein (CP) genes. Phylogenetic analyses showed that the CP gene represented two different groups: TYMV-1 and TYMV-2. The first was subdivided into three subclades: European, Australian and Japanese. Spanish isolate Sp-03 clustered together with European TYMV group, whereas Sp-09 and Sp-13 grouped with the Japanese TYMV group, and all differed from group TYMV-2. The sequences of the three different genomic regions examined clustered into the same groups. The results suggested that Spanish isolates grouped according to the original hosts from which they were isolated. The inoculation of the Spanish TYMV isolates to four crucifer plants species (turnip, broccoli, Brunswick cabbage and radish) revealed that all the isolates infected turnip with typical symptoms, although differences were observed in other hosts.Alfaro Fernández, AO.; Serrano, A.; Tornos, T.; Cebrian Mico, MC.; Córdoba-Sellés, MDC.; Jordá, C.; Font San Ambrosio, MI. (2016). Turnip yellow mosaic virus in Chinese cabbage in Spain: Commercial seed transmission and molecular characterization. EUROPEAN JOURNAL OF PLANT PATHOLOGY. 146(2):433-442. doi:10.1007/s10658-016-0929-3S4334421462Assis Filho, M., & Sherwood, J. L. (2000). Evaluation of seed transmission of Turnip yellow mosaic virus and Tobacco mosaic virus in Arabidopsis thaliana. Phytopathology, 90, 1233–1238.Benetti, M. P., & Kaswalder, F. (1983). Trasmisione per seme del virus del mosaico giallo rapa. Annali dell Istituto Sperimentale per la Patologia Vegetale, 8, 67–70.Blok, J., Mackenzie, A., Guy, P., & Gibbs, A. (1987). Nucleotide sequence comparisons of Turnip yellow mosaic virus isolates from Australia and Europe. Archives of Virology, 97, 283–295.Brunt, A., Crabtree, K., Dallwitz, M., Gibbs, A., Watson, L., & Zurcher, E.J. (1996). Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version: 20th August 1996. URL http://biology.anu.edu.au/Groups/MES/vide/ .Campbell, R. N., Wipf-Scheibel, C., & Lecoq, H. (1996). Vector-assissted seed transmission of melon necrotic spot virus in melon. Phytopathology, 86, 1294–1298.Dreher, T. W., & Bransom, K. L. (1992). Genomic RNA sequence of Turnip yellow mosaic virus isolate TYMC, a cDNA-based clone with verified infectivity. Plant Molecular Biology, 18, 403–406.Fakhro, A., Von Bargen, S., Bandte, M., Büttner, C., Franken, P., & Schwarz, D. (2011). Susceptibility of different plant species and tomato cultivars to two isolates of Pepino mosaic virus. European Journal of Plant Pathology, 129, 579–590.Gibbs, A. J., & Gower, J. C. (1960). The use of a multiple-transfer method in plant virus transmission studies: some statistical points arising in the analysis of results. Annals of Applied Biology, 48, 75–83.Hayden, C. M., Mackenzie, A. M., & Gibbs, A. J. (1998a). Virion protein sequence variation among Australian isolates of turnip yellow mosaic tymovirus. Archives of Virology, 143, 191–201.Hayden, C. M., Mackenzie, A. M., Skotnicki, M. L., & Gibbs, A. (1998b). Turnip yellow mosaic virus isolates with experimentally produced recombinant virion proteins. Journal of General Virology, 79, 395–403.Hein, A. (1984). Transmission of Turnip yellow mosaic virus through seed of Camelina sativa gold of pleasure. Journal of Plant Diseases and Protection, 91, 549–551.Herrera-Vásquez, J. A., Córdoba-Sellés, M. C., Cebrián, M. C., Alfaro-Fernández, A., & Jordá, C. (2009). Seed transmission of Melon necrotic spot virus and efficacy of seed-disinfection treatments. Plant Pathology, 58, 436–452.Hull, R. (2002). Matthews’ plant virology (4a ed.1001 pp). San Diego: Academic Press.Johansen, E., Edwards, M. C., & Hampton, R. O. (1994). Seed transmission of viruses: current perspectives. Annual Review of Phytopathology, 32, 363–386.Kirino, N., Inoue, K., Tanina, K., Yamazaki, Y., & Ohki, S. T. (2008). Turnip yellow mosaic virus isolated from Chinese cabbage in Japan. Journal of General Plant Pathology, 74, 331–334.Markham, R., & Smith, K. S. (1949). Studies on the virus of turnip yellow mosaic. Parasitology, 39, 330–342.Mathews, R. E. F. (1980). Turnip yellow mosaic virus, CMI/AAB Descriptions of plant virus No. 230 (No. 2 revised). Kew: Commonwealth Mycology Institute/Association of Applied Biologists.Mitchell, E. J., & Bond, J. M. (2005). Variation in the coat protein sequence of British isolates of Turnip yellow mosaic virus and comparison with previously published isolates. Archives of Virology, 150, 2347–2355.Pagán, I., Fraile, A., Fernández-Fueyo, E., Montes, N., Alonso-Blanco, C., & García-Arenal, F. (2010). Arabidopsis thaliana as a model for the study of plant-virus co-evolution. Philosophical Transations of the Royal Society Biological Sciences, 365, 1983–1995.Paul, H. L., Gibbs, A., & Wittman-Liebold, B. (1980). The relationships of certain Tymoviruses assessed from the amino acid composition of their coat proteins. Intervirology, 13, 99–109.Pelikanova, J. (1990). Garlic mustard a spontaneous host of TYMV. Ochrana Rostlin, 26, 17–22.Procházková, Z. (1980). Host range and symptom differences between isolates of Turnip mosaic virus obtained from Sisymbrium loeselii. Biologia Plantarum, 22, 341–347.Rimmer, S. R., Shtattuck, V. I., & Buchwaldt, L. (2007). Compendium of brassica diseases (1ª Edición ed.p. 117). USA: APS press.Rot, M. E., & Jelkman, W. (2001). Characterization and detection of several filamentous viruses of cherry: Adaptation of an alternative cloning method (DOP-PCR), and modification of an RNA extraction protocol. European Journal of Plant Pathology, 107, 411–420.Sabanadzovic, S., Abou-Ghanem, N., Castellano, M. A., Digiaero, M., & Martelli, G. P. (2000). Grapevine fleck virus-like in Vitis. Archives of Virology, 145, 553–565.Špack, J., & Kubelková, D. (2000). Serological variability among European isolates of Radish mosaic virus. Plant Pathology, 49, 295–301.Špack, J., Kubelková, D., & Hnilicka, E. (1993). Seed transmission of Turnip yellow mosaic virus in winter turnip and winter oilseed rapes. Annals of Applied Biology, 123, 33–35.Stobbs, L. W., Cerkauskas, R. F., Lowery, T., & VanDriel, L. (1998). Occurrence of Turnip yellow mosaic virus on oriental cruciferours vegetables in Southern Ontario, Canada. Plant Disease, 82, 351.Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739

    Biofumigation and biosolarization for the control of tomv: a good alternative for the use of methyl bromide

    No full text
    Los restos de cosechas son a menudo portadores de insectos, ácaros y agentes de fi topatógenos, desaconsejando su presencia en campo. Sin embargo el proceso de compostaje en el interior del suelo mediante los procesos de biofumigación y biosolarización, favorecen el control de estos agentes en función de la temperatura, tiempo, microorganismos implicados, plantas empleadas y características del suelo. Este trabajo determinó, en condiciones controladas, la efi cacia de la biofumigación y biosolarización en el control del virus del mosaico del tomate en macetas empleando 3 dosis de material vegetal infectado con el virus y en mangas de fi bra de coco de un año de uso donde quedaban restos de raíces del cultivo anterior infectadas con el virus. Tanto las macetas como las mangas de fi bra de coco fueron sometidas a diferentes tratamientos de embolsado, no embolsado y tiempo de tratamiento. Se consideró biofumigación al tratamiento con 25 ºC y biosolarización al tratamiento con 45 ºC. Los resultados obtenidos demuestran la efi cacia de la biosolarización en el control del virus en macetas sobre la biofumigación; ya que tan solo 4 semanas de tratamiento fueron sufi cientes frente a las 6 semanas necesarias en la biofumigación. En las mangas de fi bra de coco la biosolarización durante 5 semanas resultó inefi caz para el control del virus, pero se redujo el porcentaje de plantas infectadas y se observó un mayor desarrollo vegetativo y el adelanto en su fl oración. La biofumigación y biosolarización pueden ser consideradas como técnicas alternativas al uso del Bromuro de metilo en el control de agentes fi topatógenosAbstract: Crop residues are often an important source of insects, mites and phytopathogenic agents avoiding their presence in the fi eld. Nevertheless, the process of composting in the soil by means of biofumigation and biosolarization can help to control these agents depending of some factors as temperature, time of treatment, implicated microorganisms and the kind of soil. This research deals about the use of biofumigation and biosolarization for the control of Tomato mosaic virus (ToMV) under controlled conditions in pots and 3 different doses of infected vegetal material with the virus were used. Cocopeat slabs infected with the virus were used, too. These growbags had been used during one year and the virus was detected on the remained roots. Both pots and growbags were placed in open or shut plastic bags and were treated at different temperatures during different periods of time. The treatment at 25 ºC was considered as biofumigation and the treatment at 45 ºC was considered as biosolarization. Since 4 weeks of treatment at 45 ºC was suffi cient to control ToMV in pots, biosolarization was more effective than biofumigation. 6 weeks of treatment at 25 ºC were necessary to control the virus. In growbags, 5 weeks of treatment at 45 ºC were not suffi cient to control the virus, but the percentage of infected plants was reduced and a greater development and premature fl owering period were observed. Biofumigation and biosolarization can be considered as alternative techniques for the use of Methyl Bromide for the control of phytopathogenic agents

    Dispersión y reservorios naturales del virus del mosaico de la lechuga (LMV): una nota

    No full text

    Estudio de la viabilidad de la eliminación de semillas de malas hierbas en el suelo por radiación de microondas

    No full text

    Prospección de la Flavescencia dorada y de sus vectores (Hemiptera, Cicadellidae) en la zona de viñedo de Requena (Valencia)

    Get PDF
    La Flavescencia dorada es una grave enfermedad de la vid causada por un fitoplasma y transmitida en campo por el cicadélido Scaphoideus titanus Ball, aunque también hay referencias de su transmisión en condiciones experimentales por otros cicadélidos. En España irrumpió hace pocos años por la comarca catalana de l'Empordà, desde donde se teme que pueda extenderse a otras zonas vitícolas. Es por ello que en este trabajo se ha realizado una prospección durante el año 2000 de la enfermedad y de su vector en campo, así como de los cicadélidos presentes en varios viñedos de Requena (Valencia) utilizando trampas amarillas adhesivas. La detección de fitoplasmas (Flavescencia dorada) se realizó mediante Nested-PCR utilizando cebadores universales. Los resultados muestran la ausencia tanto de la Flavescencia dorada como de Scaphoideus titanus en las parcelas prospectadas. Se han capturado 14 especies de cicadélidos, la más abundante de las cuales con gran diferencia ha sido el tiflocibino Empoasca vitis (Göthe), cuya gráfica de evolución poblacional se ha obtenido, presentando un máximo en la primera semana de juli

    Transmission of Pepino mosaic virus by the fungal vector Olpidium virulentus

    Full text link
    This is the peer reviewed version of the following article: Alfaro-Fernández, A., Del Carmen Córdoba-Sellés, M., Herrera-Vásquez, J., Cebrián, M.d.C. and Jordá, C. (2010), Transmission of Pepino mosaic virus by the Fungal Vector Olpidium virulentus. Journal of Phytopathology, 158: 217-226, which has been published in final form at https://doi.org/10.1111/j.1439-0434.2009.01605.x. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Transmission of Pepino mosaic virus (PepMV) by the fungal vector Olpidium virulentus was studied in two experiments. Two characterized cultures of the fungus were used as stock cultures for the assay: culture A was from lettuce roots collected in Castellon (Spain), and culture B was from tomato roots collected in Murcia (Spain). These fungal cultures were maintained in their original host and irrigated with sterile water. The drainage water collected from irrigating these stock cultures was used for watering PepMV-infected and non-infected tomato plants to constitute the acquisition-source plants of the assay, which were divided into six different plots: plants containing fungal culture A (non-infected and PepMV-infected); plants containing fungal culture B (non-infected and PepMV-infected); PepMV-infected plants without the fungus; and plants non-infected either with PepMV and the fungus. Thirty-six healthy plants grouped into six plots, which constituted the virus acquisition-transmission plants of the assay, were irrigated with different drainage waters obtained by watering the different plots of the acquisition-source plants. PepMV was only transmitted to plants irrigated with the drainage water collected from PepMV-infected plants whose roots contained the fungal culture B from tomato with a transmission rate of 8%. No infection was detected in plants irrigated with the drainage water collected from plots with only a fungus or virus infection. Both the virus and fungus were detected in water samples collected from the drainage water of the acquisition-source plants of the assay. These transmission assays demonstrated the possibility of PepMV transmission by O. virulentus collected from tomato crops.This work was supported by Grant AGL2005-06682-C03-01 from the Spanish Ministry of Education and Science (MEC, Spain). We also thank Instituto Agroforestal Mediterraneo (UPV, Valencia) for fellowship support to A. Alfaro-Fernandez.Alfaro Fernández, AO.; Córdoba-Sellés, MDC.; Herrera-Vasquez, JA.; Cebrián, MDC.; Jordá, C. (2010). Transmission of Pepino mosaic virus by the fungal vector Olpidium virulentus. Journal of Phytopathology. 158(4):217-226. https://doi.org/10.1111/j.1439-0434.2009.01605.x217226158
    corecore