741 research outputs found

    Reclaiming human machine nature

    Get PDF
    Extending and modifying his domain of life by artifact production is one of the main characteristics of humankind. From the first hominid, who used a wood stick or a stone for extending his upper limbs and augmenting his gesture strength, to current systems engineers who used technologies for augmenting human cognition, perception and action, extending human body capabilities remains a big issue. From more than fifty years cybernetics, computer and cognitive sciences have imposed only one reductionist model of human machine systems: cognitive systems. Inspired by philosophy, behaviorist psychology and the information treatment metaphor, the cognitive system paradigm requires a function view and a functional analysis in human systems design process. According that design approach, human have been reduced to his metaphysical and functional properties in a new dualism. Human body requirements have been left to physical ergonomics or "physiology". With multidisciplinary convergence, the issues of "human-machine" systems and "human artifacts" evolve. The loss of biological and social boundaries between human organisms and interactive and informational physical artifact questions the current engineering methods and ergonomic design of cognitive systems. New developpment of human machine systems for intensive care, human space activities or bio-engineering sytems requires grounding human systems design on a renewed epistemological framework for future human systems model and evidence based "bio-engineering". In that context, reclaiming human factors, augmented human and human machine nature is a necessityComment: Published in HCI International 2014, Heraklion : Greece (2014

    Evaluating the Potential of Legumes to Mitigate N2_{2}O Emissions From Permanent Grassland Using Process-Based Models

    Get PDF
    A potential strategy for mitigating nitrous oxide (N2_{2}O) emissions from permanent grasslands is the partial substitution of fertilizer nitrogen (Nfert_{fert}) with symbiotically fixed nitrogen (Nsymb_{symb}) from legumes. The input of Nsymb_{symb} reduces the energy costs of producing fertilizer and provides a supply of nitrogen (N) for plants that is more synchronous to plant demand than occasional fertilizer applications. Legumes have been promoted as a potential N2_{2}O mitigation strategy for grasslands, but evidence to support their efficacy is limited, partly due to the difficulty in conducting experiments across the large range of potential combinations of legume proportions and fertilizer N inputs. These experimental constraints can be overcome by biogeochemical models that can vary legume‐fertilizer combinations and subsequently aid the design of targeted experiments. Using two variants each of two biogeochemical models (APSIM and DayCent), we tested the N2_{2}O mitigation potential and productivity of full factorial combinations of legume proportions and fertilizer rates for five temperate grassland sites across the globe. Both models showed that replacing fertilizer with legumes reduced N2_{2}O emissions without reducing productivity across a broad range of legume‐fertilizer combinations. Although the models were consistent with the relative changes of N2_{2}O emissions compared to the baseline scenario (200 kg N ha−1^{-1} yr−1^{-1}; no legumes), they predicted different levels of absolute N2_{2}O emissions and thus also of absolute N2_{2}O emission reductions; both were greater in DayCent than in APSIM. We recommend confirming these results with experimental studies assessing the effect of clover proportions in the range 30–50% and ≀150 kg N ha−1^{-1} yr−1^{-1} input as these were identified as best‐bet climate smart agricultural practices

    Genotyping Validates the Efficacy of Photographic Identification in a Capture-Mark-Recapture Study Based on the Head Scale Patterns of the Prairie Lizard (\u3ci\u3eSceloporus consobrinus\u3c/i\u3e)

    Get PDF
    Population studies often incorporate capture‐mark‐recapture (CMR) techniques to gather information on long‐term biological and demographic characteristics. A fundamental requirement for CMR studies is that an individual must be uniquely and permanently marked to ensure reliable reidentification throughout its lifespan. Photographic identification involving automated photographic identification software has become a popular and efficient noninvasive method for identifying individuals based on natural markings. However, few studies have (a) robustly assessed the performance of automated programs by using a double‐marking system or (b) determined their efficacy for long‐term studies by incorporating multi‐year data. Here, we evaluated the performance of the program Interactive Individual Identification System (I3S) by cross‐validating photographic identifications based on the head scale pattern of the prairie lizard (Sceloporus consobrinus) with individual microsatellite genotyping (N = 863). Further, we assessed the efficacy of the program to identify individuals over time by comparing error rates between within‐year and between‐year recaptures. Recaptured lizards were correctly identified by I3S in 94.1% of cases. We estimated a false rejection rate (FRR) of 5.9% and a false acceptance rate (FAR) of 0%. By using I3S, we correctly identified 97.8% of within‐year recaptures (FRR = 2.2%; FAR = 0%) and 91.1% of between‐year recaptures (FRR = 8.9%; FAR = 0%). Misidentifications were primarily due to poor photograph quality (N = 4). However, two misidentifications were caused by indistinct scale configuration due to scale damage (N = 1) and ontogenetic changes in head scalation between capture events (N = 1). We conclude that automated photographic identification based on head scale patterns is a reliable and accurate method for identifying individuals over time. Because many lizard or reptilian species possess variable head squamation, this method has potential for successful application in many species

    Recent advances in understanding the roles of whole genome duplications in evolution

    Get PDF
    Ancient whole-genome duplications (WGDs)—paleopolyploidy events—are key to solving Darwin’s ‘abominable mystery’ of how flowering plants evolved and radiated into a rich variety of species. The vertebrates also emerged from their invertebrate ancestors via two WGDs, and genomes of diverse gymnosperm trees, unicellular eukaryotes, invertebrates, fishes, amphibians and even a rodent carry evidence of lineage-specific WGDs. Modern polyploidy is common in eukaryotes, and it can be induced, enabling mechanisms and short-term cost-benefit assessments of polyploidy to be studied experimentally. However, the ancient WGDs can be reconstructed only by comparative genomics: these studies are difficult because the DNA duplicates have been through tens or hundreds of millions of years of gene losses, mutations, and chromosomal rearrangements that culminate in resolution of the polyploid genomes back into diploid ones (rediploidisation). Intriguing asymmetries in patterns of post-WGD gene loss and retention between duplicated sets of chromosomes have been discovered recently, and elaborations of signal transduction systems are lasting legacies from several WGDs. The data imply that simpler signalling pathways in the pre-WGD ancestors were converted via WGDs into multi-stranded parallelised networks. Genetic and biochemical studies in plants, yeasts and vertebrates suggest a paradigm in which different combinations of sister paralogues in the post-WGD regulatory networks are co-regulated under different conditions. In principle, such networks can respond to a wide array of environmental, sensory and hormonal stimuli and integrate them to generate phenotypic variety in cell types and behaviours. Patterns are also being discerned in how the post-WGD signalling networks are reconfigured in human cancers and neurological conditions. It is fascinating to unpick how ancient genomic events impact on complexity, variety and disease in modern life

    ‘Snakes and Ladders’ – ‘Therapy’ as Liberation in Nagarjuna and Wittgenstein’s Tractatus

    Get PDF
    This paper reconsiders the notion that Nagarjuna and Wittgenstein’s Tractatus may only be seen as comparable under a shared ineffability thesis, that is, the idea that reality is impossible to describe in sensible discourse. Historically, Nagarjuna and the early Wittgenstein have both been widely construed as offering either metaphysical theories or attempts to refute all such theories. Instead, by employing an interpretive framework based on a ‘resolute’ reading of the Tractatus, I suggest we see their philosophical affinity in terms of a shared conception of philosophical method without proposing theses. In doing so, this offers us a new way to understand Nagarjuna’s characteristic claims both to have ‘no views’ (MĆ«lamadhyamakakārikā 13.8 and 27.30) and refusal to accept that things exist ‘inherently’ or with ‘essence’ (svabhāva). Therefore, instead of either a view about the nature of a mind-independent ‘ultimate reality’ or a thesis concerning the rejection of such a domain, I propose that we understand Nagarjuna’s primary aim as ‘therapeutic’, that is, concerned with the dissolution of philosophical problems. However, this ‘therapy’ should neither be confined to the psychotherapeutic metaphor nor should it be taken to imply a private enlightenment only available to philosophers. Instead, for Nagarjuna and Wittgenstein, philosophical problems are cast as a source of disquiet for all of us; what their work offers is a soteriology, a means towards our salvation
    • 

    corecore