9 research outputs found

    N-linked glycosylation of proteins in the protozoan parasite Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is an obligate intracellular parasite of animal cells. Infection of humans is common and may result in devastating disease, especially in immunocompromised individuals. Despite previous reports that N-glycosylation of proteins may be a rare post-translational modification in this and related organisms, we demonstrate that it is actually quite prevalent in Toxoplasma. N-glycosylation is completely inhibited by treatment of parasites with tunicamycin, but this does not appear to exert its major effect on the parasites until they have egressed from their host cells. Although the tunicamycin-treated parasites appear structurally normal at this time they are not motile and mostly incapable of invading new host cells. The few tunicamycin-treated parasites that do invade are severely affected in their ability to replicate and accumulate with a distended endoplasmic reticulum, deformed nuclei, and without recognizable late secretory organelles. We provide experimental evidence that indicate that Toxoplasma N-glycans differ structurally from those in other eukaryotes

    Immobilization of the Type XIV Myosin Complex in Toxoplasma gondii

    Get PDF
    The substrate-dependent movement of apicomplexan parasites such as Toxoplasma gondii and Plasmodium sp. is driven by the interaction of a type XIV myosin with F-actin. A complex containing the myosin-A heavy chain, a myosin light chain, and the accessory protein GAP45 is attached to the membranes of the inner membrane complex (IMC) through its tight interaction with the integral membrane glycoprotein GAP50. For the interaction of this complex with F-actin to result in net parasite movement, it is necessary that the myosin be immobilized with respect to the parasite and the actin with respect to the substrate the parasite is moving on. We report here that the myosin motor complex of Toxoplasma is firmly immobilized in the plane of the IMC. This does not seem to be accomplished by direct interactions with cytoskeletal elements. Immobilization of the motor complex, however, does seem to require cholesterol. Both the motor complex and the cholesterol are found in detergent-resistant membrane domains that encompass a large fraction of the inner membrane complex surface. The observation that the myosin XIV motor complex of Toxoplasma is immobilized within this cholesterol-rich membrane likely extends to closely related pathogens such as Plasmodium and possibly to other eukaryotes

    Host Cell Egress and Invasion Induce Marked Relocations of Glycolytic Enzymes in Toxoplasma gondii Tachyzoites

    Get PDF
    Apicomplexan parasites are dependent on an F-actin and myosin-based motility system for their invasion into and escape from animal host cells, as well as for their general motility. In Toxoplasma gondii and Plasmodium species, the actin filaments and myosin motor required for this process are located in a narrow space between the parasite plasma membrane and the underlying inner membrane complex, a set of flattened cisternae that covers most the cytoplasmic face of the plasma membrane. Here we show that the energy required for Toxoplasma motility is derived mostly, if not entirely, from glycolysis and lactic acid production. We also demonstrate that the glycolytic enzymes of Toxoplasma tachyzoites undergo a striking relocation from the parasites' cytoplasm to their pellicles upon Toxoplasma egress from host cells. Specifically, it appears that the glycolytic enzymes are translocated to the cytoplasmic face of the inner membrane complex as well as to the space between the plasma membrane and inner membrane complex. The glycolytic enzymes remain pellicle-associated during extended incubations of parasites in the extracellular milieu and do not revert to a cytoplasmic location until well after parasites have completed invasion of new host cells. Translocation of glycolytic enzymes to and from the Toxoplasma pellicle appears to occur in response to changes in extracellular [K+] experienced during egress and invasion, a signal that requires changes of [Ca2+]c in the parasite during egress. Enzyme translocation is, however, not dependent on either F-actin or intact microtubules. Our observations indicate that Toxoplasma gondii is capable of relocating its main source of energy between its cytoplasm and pellicle in response to exit from or entry into host cells. We propose that this ability allows Toxoplasma to optimize ATP delivery to those cellular processes that are most critical for survival outside host cells and those required for growth and replication of intracellular parasites

    GAP45 Phosphorylation Controls Assembly of the Toxoplasma Myosin XIV Complexâ–¿

    Get PDF
    Toxoplasma gondii motility is powered by the myosin XIV motor complex, which consists of the myosin XIV heavy chain (MyoA), the myosin light chain (MLC1), GAP45, and GAP50, the membrane anchor of the complex. MyoA, MLC1, and GAP45 are initially assembled into a soluble complex, which then associates with GAP50, an integral membrane protein of the parasite inner membrane complex. While all proteins in the myosin XIV motor complex are essential for parasite survival, the specific role of GAP45 remains unclear. We demonstrate here that final assembly of the motor complex is controlled by phosphorylation of GAP45. This protein is phosphorylated on multiple residues, and by using mass spectroscopy, we have identified two of these, Ser163 and Ser167. The importance of these phosphorylation events was determined by mutation of Ser163 and Ser167 to Glu and Ala residues to mimic phosphorylated and nonphosphorylated residues, respectively. Mutation of Ser163 and Ser167 to either Ala or Glu residues does not affect targeting of GAP45 to the inner membrane complex or its association with MyoA and MLC1. Mutation of Ser163 and Ser167 to Ala residues also does not affect assembly of the mutant GAP45 protein into the myosin motor complex. Mutation of Ser163 and Ser167 to Glu residues, however, prevents association of the MyoA-MLC1-GAP45 complex with GAP50. These observations indicate that phosphorylation of Ser163 and Ser167 in GAP45 controls the final step in assembly of the myosin XIV motor complex

    Toxoplasma gondii Hsp20 is a stripe-arranged chaperone-like protein associated with the outer leaflet of the inner membrane complex

    Get PDF
    Background information: Toxoplasma gondii is among the most successful parasites, with nearly half of the human population chronically infected. T. gondii has 5 small heat shock (sHsp) proteins located in different subcellular compartments. Among them, Hsp20 showed to be localized at the periphery of the parasite body. sHsps are widespread, constituting the most poorly conserved family of molecular chaperones. The presence of sHsps in membrane structures is unusual. Results: The localization of Hsp20 was further analyzed using high resolution fluorescent light microscopy as well as electron microscopy, which revealed that Hsp20 is associated to the outer surface of the inner membrane complex (IMC), in a set of discontinuous stripes following the same spiraling trajectories as the subpellicular microtubules. Detergent extraction profile of Hsp20 was similar to that of GAP45, a glideosome protein associated to inner membrane complex (IMC), but different from that of IMC1 protein. Although we were unable to detect interacting protein partners of Hsp20 either in normal or stressed tachyzoites, an interaction of Hsp20 with phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5 biphosphate phospholipids could be observed. Conclusions: Hsp20 showed to be associated to a specialized membranous structure of the parasite, the IMC. This discontinuous striped-arrangement is unique in T. gondii, indicating that the topology of the outer leaflet of the IMC is not homogeneous

    N-linked glycosylation of proteins in the protozoan parasite Toxoplasma gondii

    No full text
    Toxoplasma gondii is an obligate intracellular parasite of animal cells. Infection of humans is common and may result in devastating disease, especially in immunocompromised individuals. Despite previous reports that N-glycosylation of proteins may be a rare post-translational modification in this and related organisms, we demonstrate that it is actually quite prevalent in Toxoplasma. N-glycosylation is completely inhibited by treatment of parasites with tunicamycin, but this does not appear to exert its major effect on the parasites until they have egressed from their host cells. Although the tunicamycin-treated parasites appear structurally normal at this time they are not motile and mostly incapable of invading new host cells. The few tunicamycin-treated parasites that do invade are severely affected in their ability to replicate and accumulate with a distended endoplasmic reticulum, deformed nuclei, and without recognizable late secretory organelles. We provide experimental evidence that indicate that Toxoplasma N-glycans differ structurally from those in other eukaryotes

    Immobilization of the Type XIV Myosin Complex in Toxoplasma gondii

    Get PDF
    The substrate-dependent movement of apicomplexan parasites such as Toxoplasma gondii and Plasmodium sp. is driven by the interaction of a type XIV myosin with F-actin. A complex containing the myosin-A heavy chain, a myosin light chain, and the accessory protein GAP45 is attached to the membranes of the inner membrane complex (IMC) through its tight interaction with the integral membrane glycoprotein GAP50. For the interaction of this complex with F-actin to result in net parasite movement, it is necessary that the myosin be immobilized with respect to the parasite and the actin with respect to the substrate the parasite is moving on. We report here that the myosin motor complex of Toxoplasma is firmly immobilized in the plane of the IMC. This does not seem to be accomplished by direct interactions with cytoskeletal elements. Immobilization of the motor complex, however, does seem to require cholesterol. Both the motor complex and the cholesterol are found in detergent-resistant membrane domains that encompass a large fraction of the inner membrane complex surface. The observation that the myosin XIV motor complex of Toxoplasma is immobilized within this cholesterol-rich membrane likely extends to closely related pathogens such as Plasmodium and possibly to other eukaryotes
    corecore