62 research outputs found

    Potential Applications of High Pressure Homogenization in Winemaking: A Review

    Get PDF
    High pressure homogenization (HPH) is an emerging technology with several possible applications in food sector, such as nanoemulsion preparation, microbial and enzymatic inactivation, cell disruption for the extraction of intracellular components, as well as modification of food biopolymer structure to steer their functionalities. All these effects are attributable to the intense mechanical stresses, such as cavitation and shear forces, suffered by the product during the passage through the homogenization valve. The exploitation of the disruptive forces delivered during HPH was recently proposed also for winemaking applications. In this review, after a general description of HPH and its main applications in food processing, the survey will be extended to the use of this technology for the production of wine and fermented beverages, particularly focusing on the effects of HPH on the inactivation of wine microorganisms and the induction of yeast autolysis. Further enological applications of HPH technology, such as its use for the production of inactive dry yeast preparations, will be also discusse

    Characterization of Non-Saccharomyces Yeast Strains Isolated from Grape Juice and Pomace: Production of Polysaccharides and Antioxidant Molecules after Growth and Autolysis

    Get PDF
    Non-Saccharomyces yeasts (NSY) represent a relevant part of must and wine microbiota, contributing remarkably to the composition of lees biomass. Despite a number of studies indicate their capacity to increase wine polysaccharide content, their contribution to wine quality during aging on lees (AOL) has not been well elucidated yet. In the present study, twenty yeast strains (13 non-Saccharomyces and 7 Saccharomyces) were isolated from grape must and pomace and identified by morphologic and genetic characterization. Biomass production, cell growth and the release of soluble molecules (polysaccharides, amino acids, thiol compounds and glutathione) were evaluated after growth and after autolysis induced by β-glucanases addition. Differences between strains were observed for all parameters. Strains that produced higher amounts of soluble compounds during growth also showed the highest release after autolysis. Hanseniaspora spp. showed the greatest production of polysaccharides and antioxidant molecules, and biomass production and cell viability comparable to the commercial S. cerevisiae and T. delbrueckii used as reference. The aptitude of certain NSY to release antioxidants and polysaccharides is an interesting feature for managing AOL through sequential or mixed fermentations or for the production of inactive autolyzed yeasts for winemaking

    Effect of a yeast autolysate produced by high pressure homogenization on white wine evolution during ageing

    Get PDF
    The enological characteristics and the performances of a yeast autolysate produced by high pressure homogenization (HPH-YD) were investigated for the first time in white wine and model solution, in comparison with a thermolysate (T-YD) and a commercial yeast derivative (COMM). In wine-like medium, HPH-YD showed a significant release of glucidic colloids (on average, slightly higher than the other products), also leading to a greater glutathione solubilization with respect to T-YD. Concerning the volatile composition of the autolysates, HPH-YD was characterized by the highest concentration of alcohols and esters, while showing an average amount of fatty acids, carbonyls and heterocyclic compounds lower than COMM. These features are potentially linked to a more favorable impact of this product on the composition of wine aroma, should these compounds be released into the wine itself. HPH-YD determined minor modifications on wine volatile profile when added for short contact times, without releasing unwanted compounds and with a slightly lower binding capacity towards wine esters. The effects of the three yeast derivatives (YDs) on wine color during ageing was also investigated in comparison with sulfur dioxide (SO2). HPH-YD was the most efficient preparation, limiting wine color changes due to oxidation during four months and behaving more similarly to SO2. The use of HPH for the production of yeast autolysates for winemaking may represent an interesting alternative to thermal treatments, improving the enological characteristics of these additives, particularly their antioxidant capacity, leading anyhow a significant release of colloidal molecules and a limited impact on wine aroma composition

    Pulsed electric field processing of white grapes (cv. Garganega): Effects on wine composition and volatile compounds

    Get PDF
    Pulsed electric field (PEF) processing of white grapes (cv. Garganega) after crushing was studied on pilot-plant scale, to investigate the effects of the treatment on must and wine composition, wine color and predisposition to browning, wine aroma compounds and extraction of aroma precursors from grapes. PEF pre-treatment of grapes did not change the must or wine basic composition, nor was it able to modify the evolution of alcoholic fermentation. By contrast, PEF produced an increase in total dry extract, wine color and total phenolics. Treatment corresponding to a total specific energy of 22\u202fkJ\u202fkg 121 allowed more intense extraction of varietal aroma precursors without provoking excessive color evolution and extraction of phenolic compounds, apparently increasing the stability of wine towards oxidation. Due to the few papers available on this subject, PEF applications on white grapes should be optimized in further experiments

    Application of multi-pass high pressure homogenization under variable temperature regimes to induce autolysis of wine yeasts

    Get PDF
    The effects of the number of passes and processing temperature management (controlled vs. uncontrolled) were investigated during high pressure homogenization-induced autolysis of Saccharomyces bayanus wine yeasts, treated at 150 MPa. Both variables were able to affect cell viability, and the release of soluble molecules (free amino acids, proteins and glucidic colloids), but the effect of temperature was more important. S. bayanus cells were completely inactivated in 10 passes without temperature control (corresponding to a processing temperature of 75 C). The two processing variables also affected the volatile composition of the autolysates produced: higher temperatures led to a lower concentration of volatile compounds. The management of the operating conditions may allow the compositional characteristics of the products to be modulated, making them suitable for different winemaking applications

    Potential of high pressure homogenization to induce autolysis of wine yeasts

    Get PDF
    High pressure homogenization (HPH) was tested for inducing autolysis in a commercial strain of Saccharomyces bayanus for winemaking. The effects on cell viability, the release of soluble proteins, glucidic colloids and amino acids in wine-like medium and the volatile composition of the autolysates were investigated after processing, in comparison with thermolysis. HPH seemed a promising technique for inducing autolysis of wine yeasts. One pass at 150 MPa was the best operating conditions. Soluble colloids, proteins and free amino acids were similar after HPH and thermolysis, but the former gave a more interesting volatile composition after processing, with higher concentrations of ethyl esters (fruity odors) and lower fatty acids (potential off-flavors). This might allow different winemaking applications for HPH, such as the production of yeast derivatives for wine ageing. In the conditions tested, HPH did not allow the complete inactivation of yeast cells; the treatment shall be optimized before winemaking use. \ua9 2015 Elsevier Ltd. All rights reserved

    Effect of the combined application of heat treatment and proteases on protein stability and volatile composition of Greek white wines

    Get PDF
    Aim: This work evaluates the effects of the combined use of heat treatment (HT, 75 °C, 2 min) and proteases (P) on the protein stability and volatile composition of two white wines, obtained from the Greek cv. Assyrtiko and Moschofilero.Methods and results: Wine protein stabilization was assessed by heat test, using RP-HPLC determination of pathogenesis-related proteins (PRP) and by sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The impact of bentonite and P + HT treatment on wine aroma profile was evaluated by GC-MS with liquid–liquid extraction. According to the heat test, in Assyrtiko wine the level of stability achieved with P + HT was comparable with that obtained by bentonite fining and for Moschofilero wine – where protein instability was higher – bentonite was more efficient. RP-HPLC profiles showed that, in general, higher percentages of chitinases (CH) than thaumatin-like proteins (TLP) were removed by both bentonite and P + HT, with a similar efficiency for the two treatments and sometimes better performances for the latter. Conversely, TLP were removed more efficiently by bentonite, even if some fractions were eliminated to a slightly higher extent by proteases. In the conditions of the experiment, bentonite resulted in minor changes to the wine aroma profile. However, heating during protease treatment modified wine volatile composition, reducing the concentration of esters produced during fermentation while simultaneously increasing the contents of certain esters characteristic of aging such as ethyl lactate.Conclusions: The combination of proteases and heat treatment may be a promising technique for protein stabilization of wines. However, further investigations are needed to optimize the time:temperature ratio of the heat treatment in order to obtain the maximum protease activity and the minimum thermal deterioration of the wine quality.Significance and impact of the study: The results of this study have a practical interest for both the scientific community and wine sector, contributing to knowledge of the efficacy and limitations of the use of protease enzymes for wine stabilization

    Nanoemulsions as delivery systems of hydrophobic silybin from silymarin extract: Effect of oil type on silybin solubility, invitro bioaccessibility and stability

    Get PDF
    The potential of nanoemulsion delivery systems to carry silybin from silymarin extract was studied. To this purpose, sunflower oil, extra virgin olive oil and castor oil were used to prepare silymarin loaded nanoemulsions. The effect of oil type on the silybin solubility and i. n vitro bioaccessibility was evaluated. Moreover, the changes in particle size, silybin concentration, oxygen consumption and hydroperoxide concentration were studied in nanoemulsions during storage at 20\ub0C. Results showed that silybin can be successfully incorporated into physically stable nanoemulsions prepared with the different oils. The oil type slightly influenced the silybin invitro bioaccessibility, while it affected the nanoemulsion particle size as well as silybin stability during storage. In particular, silybin underwent degradation, showing lower stability in extra virgin oil and sunflower oil than in castor oil. Results also showed that the presence of the silymarin extract containing silybin did not affect the oxidation kinetics of the carrier oils. \ua9 2015 Elsevier Ltd

    Influence of sequential and mixed fermentations with non-Saccharomyces yeasts on the sensory profile of red wine

    Full text link
    The aim of this work is to evaluate the influence of S. pombe and T. delbrueckii species on the sensory quality of red wine when used in sequential and mixed fermentations with S. cerevisiae

    Cluster Thinning and Vineyard Site Modulate the Metabolomic Profile of Ribolla Gialla Base and Sparkling Wines

    Get PDF
    Depending on the vineyard location, cluster thinning (CT) may represent an effective tool to obtain the desired grape composition and wine quality. The effect of 20% cluster thinning on Ribolla Gialla (Vitis vinifera L.) sparkling wine aroma, lipid compounds, and aromatic amino acid (AAA) metabolites composition was studied for three consecutive seasons in two vineyards located in the Friuli Venezia Giulia region, Italy. In the examined sparkling wines, the vintage meteorological conditions exhibited significant influences on the metabolic profile of the samples. Data were normalized by season, and the impact of the CT treatment was evaluated for each vineyard site separately. Crop removal showed a limited positive impact on aroma compounds in sparkling wines from vineyards located in the valley. Concerning the AAA compounds, their concentration was higher in the vineyard at the foot of the hills. Cluster thinning resulted in a drop in concentration, reducing the risk of atypical aging. Despite minor differences according to targeted metabolome profiling, the sensory analysis confirmed the effects of the CT treatment in the valley floor vineyard. Reducing crop in this site, where the yield was higher, promoted a moderate improvement of Ribolla Gialla sparkling wine. In contrast, for wine produced in the vineyard at the foot of the hills, the sensory analysis indicated a preference for wines from the unthinned control samples. Overall, the study indicates that cluster thinning is a viticultural technique that could potentially improve the quality of Ribolla Gialla sparkling wines, but only in situations of excessive grape production
    • …
    corecore