1,909 research outputs found
Coherent Exciton Lasing in ZnSe/ZnCdSe Quantum Wells?
A new mechanism for exciton lasing in ZnSe/ZnCdSe quantum wells is proposed.
Lasing, occurring below the lowest exciton line, may be associated with a
BCS-like condensed (coherent) exciton state. This state is most stable at low
temperatures for densities in the transition region separating the exciton Bose
gas and the coherent exciton state. Calculations show the gain region to lie
below the exciton line and to be separated from the absorption regime by a
transparency region of width, for example, about 80 meV for a 90 Angstrom
ZnSe/Zn_(0.75)Cd_(0.25)Se quantum well. Experimental observation of the
transparency region using differential spectroscopy would confirm this picture.Comment: 9 pages + 3 figs contained in 4 postscript files to appear Appl.
Phys. Lett. March 13, 199
On the total curvatures of a tame function
Given a definable function f, enough differentiable, we study the continuity
of the total curvature function t --> K(t), total curvature of the level {f=t},
and the total absolute curvature function t-->|K| (t), total absolute curvature
of the level {f=t}. We show they admits at most finitely many discontinuities
Geodetic, teleseismic, and strong motion constraints on slip from recent southern Peru subduction zone earthquakes
We use seismic and geodetic data both jointly and separately to constrain coseismic slip from the 12 November 1996 M_w 7.7 and 23 June 2001 M_w 8.5 southern Peru subduction zone earthquakes, as well as two large aftershocks following the 2001 earthquake on 26 June and 7 July 2001. We use all available data in our inversions: GPS, interferometric synthetic aperture radar (InSAR) from the ERS-1, ERS-2, JERS, and RADARSAT-1 satellites, and seismic data from teleseismic and strong motion stations. Our two-dimensional slip models derived from only teleseismic body waves from South American subduction zone earthquakes with M_w > 7.5 do not reliably predict available geodetic data. In particular, we find significant differences in the distribution of slip for the 2001 earthquake from models that use only seismic (teleseismic and two strong motion stations) or geodetic (InSAR and GPS) data. The differences might be related to postseismic deformation or, more likely, the different sensitivities of the teleseismic and geodetic data to coseismic rupture properties. The earthquakes studied here follow the pattern of earthquake directivity along the coast of western South America, north of 5°S, earthquakes rupture to the north; south of about 12°S, directivity is southerly; and in between, earthquakes are bilateral. The predicted deformation at the Arequipa GPS station from the seismic-only slip model for the 7 July 2001 aftershock is not consistent with significant preseismic motion
Adaptive density estimation for stationary processes
We propose an algorithm to estimate the common density of a stationary
process . We suppose that the process is either or
-mixing. We provide a model selection procedure based on a generalization
of Mallows' and we prove oracle inequalities for the selected estimator
under a few prior assumptions on the collection of models and on the mixing
coefficients. We prove that our estimator is adaptive over a class of Besov
spaces, namely, we prove that it achieves the same rates of convergence as in
the i.i.d framework
On small time asymptotics for rough differential equations driven by fractional Brownian motions
We survey existing results concerning the study in small times of the density
of the solution of a rough differential equation driven by fractional Brownian
motions. We also slightly improve existing results and discuss some possible
applications to mathematical finance.Comment: This is a survey paper, submitted to proceedings in the memory of
Peter Laurenc
Adaptive estimation in circular functional linear models
We consider the problem of estimating the slope parameter in circular
functional linear regression, where scalar responses Y1,...,Yn are modeled in
dependence of 1-periodic, second order stationary random functions X1,...,Xn.
We consider an orthogonal series estimator of the slope function, by replacing
the first m theoretical coefficients of its development in the trigonometric
basis by adequate estimators. Wepropose a model selection procedure for m in a
set of admissible values, by defining a contrast function minimized by our
estimator and a theoretical penalty function; this first step assumes the
degree of ill posedness to be known. Then we generalize the procedure to a
random set of admissible m's and a random penalty function. The resulting
estimator is completely data driven and reaches automatically what is known to
be the optimal minimax rate of convergence, in term of a general weighted
L2-risk. This means that we provide adaptive estimators of both the slope
function and its derivatives
Study of ortho-to-paraexciton conversion in CuO by excitonic Lyman spectroscopy
Using time-resolved - excitonic Lyman spectroscopy, we study the
orthoexciton-to-paraexcitons transfer, following the creation of a high density
population of ultracold orthoexcitons by resonant two-photon excitation
with femtosecond pulses.
An observed fast exciton-density dependent conversion rate is attributed to
spin exchange between pairs of orthoexcitons.
Implication of these results on the feasibility of BEC of paraexcitons in
CuO is discussed
A Rare Case of Diffuse Polyarthritis in the Context of an Epididymoorchitis due to Mumps Infection
Mumps is a childhood disease with declining incidence in the western world and arthritis is a rare complication associated to the disease. Various presentations exist making diagnosis even more challenging. The mechanisms responsible for the joint involvement remain largely unknown but the timing of onset of the symptoms usually coincide with the rise in antibody titers arguing for an immunologic mediated response. We hereby report a rare case of polyarthritis in the onset of epididymoorchitis due to mumps infection in a HIV infected male patient. Elevated IL-6 serum level in our patient suggests that this cytokine may be an interesting biomarker for the diagnosis of mumps related arthritis
Spin degree of freedom in two dimensional exciton condensates
We present a theoretical analysis of a spin-dependent multicomponent
condensate in two dimensions. The case of a condensate of resonantly
photoexcited excitons having two different spin orientations is studied in
detail. The energy and the chemical potentials of this system depend strongly
on the spin polarization . When electrons and holes are located in two
different planes, the condensate can be either totally spin polarized or spin
unpolarized, a property that is measurable. The phase diagram in terms of the
total density and electron-hole separation is discussed.Comment: 4 pages, 3 figures, Accepted for publication in Physical Review
Letter
Pump Built-in Hamiltonian Method for Pump-Probe Spectroscopy
We propose a new method of calculating nonlinear optical responses of
interacting electronic systems. In this method, the total Hamiltonian (system +
system-pump interaction) is transformed into a different form that (apparently)
does not have a system-pump interaction. The transformed Hamiltonian, which we
call the pump built-in Hamiltonian, has parameters that depend on the strength
of the pump beam. Using the pump built-in Hamiltonian, we can calculate
nonlinear responses (responses to probe beams as a function of the pump beam)
by applying the {\em linear} response theory. We demonstrate the basic idea of
this new method by applying it to a one-dimensional, two-band model, in the
case the pump excitation is virtual (coherent excitation). We find that the
exponent of the Fermi edge singularity varies with the pump intensity.Comment: 6 page
- …