474 research outputs found

    Linear and non linear response in the aging regime of the 1D trap model

    Full text link
    We investigate the behaviour of the response function in the one dimensional trap model using scaling arguments that we confirm by numerical simulations. We study the average position of the random walk at time tw+t given that a small bias h is applied at time tw. Several scaling regimes are found, depending on the relative values of t, tw and h. Comparison with the diffusive motion in the absence of bias allows us to show that the fluctuation dissipation relation is, in this case, valid even in the aging regime.Comment: 5 pages, 3 figures, 3 references adde

    Evaluation of crowdsourcing Wi-Fi radio map creation in a real scenario for AAL applications

    Get PDF
    Indoor location at room level plays a key role for providing useful services for Ambient Assisted Living (AAL) applications. Wi-Fi fingerprinting indoor location methods are extensively used due to the widespread availability of WiFi infrastructures. A main drawback of Wi-Fi fingerprinting methods is the temporal cost involved in creating the radio maps. Crowdsourcing strategies have been presented as a way to minimize the cost of radio map creation. In this work, we present an extensive study of the issues involved when using crowdsourcing strategies for that purpose. Results provided by extensive experiments performed in a real scenario by three users during two weeks are presented. The main conclusions are: i) crowdsourcing data improves accuracy location in most studied cases; ii) accuracy of Wi-Fi fingerprinting methods decay along time; iii) device diversity is an important issue even when using the same device model

    Multiple scaling regimes in simple aging models

    Full text link
    We investigate aging in glassy systems based on a simple model, where a point in configuration space performs thermally activated jumps between the minima of a random energy landscape. The model allows us to show explicitly a subaging behavior and multiple scaling regimes for the correlation function. Both the exponents characterizing the scaling of the different relaxation times with the waiting time and those characterizing the asymptotic decay of the scaling functions are obtained analytically by invoking a `partial equilibrium' concept.Comment: 4 pages, 3 figure

    Cough reflex testing with inhaled capsaicin in the study of chronic cough

    Get PDF
    AbstractObjectives: To assess the utility of capsaicin test in the differential diagnosis of non-productive causes of chronic cough and to examine the effects of treatment on this reflex. Participants: 86 healthy volunteers and 101 patients with chronic cough: asthma (n: 54), gastroesophageal reflux (n: 35) and post-nasal drip syndrome (n: 12). Design: Prospective intervention trial. Spirometry, bronchoprovocation test with histamine (PC20), and cough challenge with ascending concentrations of capsaicin (0.49–500 μM) were initially performed in all subjects. Patients were treated for 3 months according to the origin of the cough. Concentrations that elicited two (C2) and five or more coughs (C5) were determined before and after treatment.Results: In healthy subjects, cough sensitivity to capsaicin was not influenced by gender or smoking status; however, women with chronic cough were more sensitive to cough challenge than men. C2 and C5 were significantly lower in patients with asthma or gastroesophageal reflux than in post-nasal drip syndrome. No significant correlation was observed between the capsaicin cough threshold and PC20. Cough sensitivity did not improve significantly in most patients with asthma or gastroesophageal reflux despite adequate medical treatment during 3 months. Discriminative value of capsaicin test to differentiate healthy subjects from patients with asthma or reflux was poor. Conclusions: Cough sensitivity to inhaled capsaicin is a safe and reproducible tool in the study of chronic cough. However, its usefulness for the management and differential diagnosis is limited

    From the solutions of diffusion equation to the solutions of subdiffusive one

    Full text link
    Starting with the Green's functions found for normal diffusion, we construct exact time-dependent Green's functions for subdiffusive equation (with fractional time derivatives), with the boundary conditions involving a linear combination of fluxes and concentrations. The method is particularly useful to calculate the concentration profiles in a multi-part system where different kind of transport occurs in each part of it. As an example, we find the solutions of subdiffusive equation for the system composed from two parts with normal diffusion and subdiffusion, respectively.Comment: 11 pages, 2 figure

    Nonlinear anomalous diffusion equation and fractal dimension: Exact generalized gaussian solution

    Full text link
    In this work we incorporate, in a unified way, two anomalous behaviors, the power law and stretched exponential ones, by considering the radial dependence of the NN-dimensional nonlinear diffusion equation ρ/t=(Kρν)(μFρ)αρ,\partial\rho /\partial{t}={\bf \nabla} \cdot (K{\bf \nabla} \rho^{\nu})-{\bf \nabla}\cdot(\mu{\bf F} \rho)-\alpha \rho , where K=DrθK=D r^{-\theta}, ν\nu, θ\theta, μ\mu and DD are real parameters and α\alpha is a time-dependent source. This equation unifies the O'Shaugnessy-Procaccia anomalous diffusion equation on fractals (ν=1\nu =1) and the spherical anomalous diffusion for porous media (θ=0\theta=0). An exact spherical symmetric solution of this nonlinear Fokker-Planck equation is obtained, leading to a large class of anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation are also discussed by introducing an effective potential.Comment: Latex, 6 pages. To appear in Phys. Rev.

    Rejuvenation in the Random Energy Model

    Full text link
    We show that the Random Energy Model has interesting rejuvenation properties in its frozen phase. Different `susceptibilities' to temperature changes, for the free-energy and for other (`magnetic') observables, can be computed exactly. These susceptibilities diverge at the transition temperature, as (1-T/T_c)^-3 for the free-energy.Comment: 9 pages, 1 eps figur

    Endogenous insulin secretion in critically ill patients

    Get PDF
    1-pageGlucose-insulin system models can be used for improved glycemic control of critically ill patients. A key component of glucose-insulin models is pancreatic insulin secretion. There is limited data in the literature quantifying insulin secretion in critically ill patients at physiologic levels. This study presents a model pancreatic insulin secretion in critically ill patients based on data from a critically ill population

    Aging in Models of Non-linear Diffusion

    Full text link
    We show that for a family of problems described by non-linear diffusion equations an exact calculation of the two time correlation function gives C(t,t')=f(t-t')g(t'), t>t', exhibiting normal and anomalous diffusions, as well as aging effects, depending on the degree of non-linearity. We discuss also the form in which FDT is violated in this class of systems. Finally we argue that in this type of models aging may be consequence of the non conservation of the "total mass".Comment: 4 pages, 1 figure, to appear in Phys.Rev.

    Statistical mechanics of a single particle in a multiscale random potential: Parisi landscapes in finite dimensional Euclidean spaces

    Full text link
    We construct a N-dimensional Gaussian landscape with multiscale, translation invariant, logarithmic correlations and investigate the statistical mechanics of a single particle in this environment. In the limit of high dimension N>>1 the free energy of the system and overlap function are calculated exactly using the replica trick and Parisi's hierarchical ansatz. In the thermodynamic limit, we recover the most general version of the Derrida's Generalized Random Energy Model (GREM). The low-temperature behaviour depends essentially on the spectrum of length scales involved in the construction of the landscape. If the latter consists of K discrete values, the system is characterized by a K-step Replica Symmetry Breaking solution. We argue that our construction is in fact valid in any finite spatial dimensions N1N\ge 1. We discuss implications of our results for the singularity spectrum describing multifractality of the associated Boltzmann-Gibbs measure. Finally we discuss several generalisations and open problems, the dynamics in such a landscape and the construction of a Generalized Multifractal Random Walk.Comment: 25 pages, published version with a few misprints correcte
    corecore