531 research outputs found

    Complete Issue - Intertext 2023

    Get PDF

    Complete Issue: Volume 4 (2)

    Get PDF
    Vol4_

    Distributed Utilization Control for Real-time Clusters with Load Balancing

    Get PDF
    Recent years have seen rapid growth of online services that rely on large-scale server clusters to handle high volume of requests. Such clusters must adaptively control the CPU utilizations of many processors in order to maintain desired soft real-time performance and prevent system overload in face of unpredictable workloads. This paper presents DUC-LB, a novel distributed utilization control algorithm for cluster-based soft real-time applications. Compared to earlier works on utilization control, a distinguishing feature of DUC-LB is its capability to handle system dynamics caused by load balancing, which is a common and essential component of most clusters today. Simulation results and control-theoretic analysis demonstrate that DUC-LB can provide robust utilization control and effective load balancing in large-scale clusters

    Satellite potentials for hypergeometric Natanzon potentials

    Get PDF
    As a result of the so(2,1) of the hypergeometric Natanzon potential a set of potentials related to the given one is determined. The set arises as a result of the action of the so(2,1) generators.Comment: 9 page

    Recommender Thermometer for Measuring the Preparedness for Flood Resilience Management

    Get PDF
    A range of various thermometers and similar scales are employed in different human and resilience management activities: Distress Thermometer, Panic Thermometer, Fear Thermometer, fire danger rating, hurricane scales, earthquake scales (Richter Magnitude Scale, Mercalli Scale), Anxiety Thermometer, Help Thermometer, Problem Thermometer, Emotion Thermometer, Depression Thermometer, the Torino scale (assessing asteroid/comet impact prediction), Excessive Heat Watch, etc. Extensive financing of the preparedness for flood resilience management with overheated full-scale resilience management might be compared to someone ill running a fever of 41°C. As the financial crisis hits and resilience management financing cools down it reminds a sick person whose body temperature is too low. The degree indicated by the Recommender Thermometer for Measuring the Preparedness for Flood Resilience Management with a scale between Tmin=34,0° and Tmax=42,0° shows either cool or overheated preparedness for flood resilience management. The formalized presentation of this research shows how changes in the micro, meso and macro environment of resilience management and the extent to which the goals pursued by various interested parties are met cause corresponding changes in the “temperature” of the preparedness for resilience management. Global innovative aspects of the Recommender Thermometer developed by the authors of this paper are, primarily, its capacity to measure the “temperature” of the preparedness for flood resilience management automatically, to compile multiple alternative recommendations (preparedness for floods, including preparing your home for floods, taking precautions against a threat of floods, retrofitting for flood-prone areas, checking your house insurance; preparedness for bushfires, preparedness for cyclones, preparedness for severe storms, preparedness for heat waves, etc.) customised for a specific user, to perform multiple criteria analysis of the recommendations, and to select the ten most rational ones for that user. Across the world, no other system offers these functions yet. The Recommender Thermometer was developed and fine-tuned in the course of the Android (Academic Network for Disaster Resilience to Optimise educational Development) project

    Bounds on R-Parity Violating Parameters from Fermion EDM's

    Get PDF
    We study one-loop contributions to the fermion electric dipole moments in the Minimal Supersymmetric Standard Model with explicit R-parity violating interactions. We obtain new individual bounds on R-parity violating Yukawa couplings and put more stringent limits on certain parameters than those obtained previously.Comment: 16 pages, LaTe

    Quantum Spin Dynamics (QSD) II

    Get PDF
    We continue here the analysis of the previous paper of the Wheeler-DeWitt constraint operator for four-dimensional, Lorentzian, non-perturbative, canonical vacuum quantum gravity in the continuum. In this paper we derive the complete kernel, as well as a physical inner product on it, for a non-symmetric version of the Wheeler-DeWitt operator. We then define a symmetric version of the Wheeler-DeWitt operator. For the Euclidean Wheeler-DeWitt operator as well as for the generator of the Wick transform from the Euclidean to the Lorentzian regime we prove existence of self-adjoint extensions and based on these we present a method of proof of self-adjoint extensions for the Lorentzian operator. Finally we comment on the status of the Wick rotation transform in the light of the present results.Comment: 27 pages, Latex, preceded by a companion paper before this on

    Constraints from CMB in the intermediate Brans-Dicke inflation

    Full text link
    We study an intermediate inflationary stage in a Jordan-Brans-Dicke theory. In this scenario we analyze the quantum fluctuations corresponding to adiabatic and isocurvature modes. Our model is compared to that described by using the intermediate model in Einstein general relativity theory. We assess the status of this model in light of the seven-year WMAP data.Comment: 17 pages, 6 figure

    Atomically Thin Al2 O3 Films for Tunnel Junctions

    Get PDF
    Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M-I interface and a significantly enhanced barrier height compared to thermal AlOx. These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions

    The sdB pulsating star V391 Peg and its putative giant planet revisited after 13 years of time-series photometric data

    Get PDF
    V391 Peg (alias HS 2201+2610) is a subdwarf B (sdB) pulsating star that shows both p- and g-modes. By studying the arrival times of the p-mode maxima and minima through the O-C method, in a previous article the presence of a planet was inferred with an orbital period of 3.2 years and a minimum mass of 3.2 MJup. Here we present an updated O-C analysis using a larger data set of 1066 h of photometric time series ( 2.5× larger in terms of the number of data points), which covers the period between 1999 and 2012 (compared with 1999-2006 of the previous analysis). Up to the end of 2008, the new O-C diagram of the main pulsation frequency (f1) is compatible with (and improves) the previous two-component solution representing the long-term variation of the pulsation period (parabolic component) and the giant planet (sine wave component). Since 2009, the O-C trend of f1 changes, and the time derivative of the pulsation period (p.) passes from positive to negative; the reason of this change of regime is not clear and could be related to nonlinear interactions between different pulsation modes. With the new data, the O-C diagram of the secondary pulsation frequency (f2) continues to show two components (parabola and sine wave), like in the previous analysis. Various solutions are proposed to fit the O-C diagrams of f1 and f2, but in all of them, the sinusoidal components of f1 and f2 differ or at least agree less well than before. The nice agreement found previously was a coincidence due to various small effects that are carefully analyzed. Now, with a larger dataset, the presence of a planet is more uncertain and would require confirmation with an independent method. The new data allow us to improve the measurement of p. for f1 and f2: using only the data up to the end of 2008, we obtain p.1 = (1.34 ± 0.04) × 10-12 and p.2 = (1.62 ± 0.22) × 10-12. The long-term variation of the two main pulsation periods (and the change of sign of p.1) is visible also in direct measurements made over several years. The absence of peaks near f1 in the Fourier transform and the secondary peak close to f2 confirm a previous identification as l = 0 and l = 1, respectively, and suggest a stellar rotation period of about 40 days. The new data allow constraining the main g-mode pulsation periods of the star
    • 

    corecore