49 research outputs found

    ΔNp63-mediated regulation of hyaluronic acid metabolism and signaling supports HNSCC tumorigenesis

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and several molecular pathways that underlie the molecular tumorigenesis of HNSCC have been identified. Among them, amplification or overexpression of ΔNp63 isoforms is observed in the majority of HNSCCs. Here, we unveiled a ΔNp63-dependent transcriptional program able to regulate the metabolism and the signaling of hyaluronic acid (HA), the major component of the extracellular matrix (ECM). We found that ∆Np63 is capable of sustaining the production of HA levels in cell culture and in vivo by regulating the expression of the HA synthase HAS3 and two hyaluronidase genes, HYAL-1 and HYAL-3. In addition, ∆Np63 directly regulates the expression of CD44, the major HA cell membrane receptor. By controlling this transcriptional program, ∆Np63 sustains the epithelial growth factor receptor (EGF-R) activation and the expression of ABCC1 multidrug transporter gene, thus contributing to tumor cell proliferation and chemoresistance. Importantly, p63 expression is positively correlated with CD44, HAS3, and ABCC1 expression in squamous cell carcinoma datasets and p63-HA pathway is a negative prognostic factor of HNSCC patient survival. Altogether, our data shed light on a ∆Np63-dependent pathway functionally important to the regulation of HNSCC progression

    Anti-tumoral effect of desmethylclomipramine in lung cancer stem cells

    Get PDF
    Lung cancer is the most feared of all cancers because of its heterogeneity and resistance to available treatments. Cancer stem cells (CSCs) are the cell population responsible for lung cancer chemoresistance and are a very good model for testing new targeted therapies. Clomipramine is an FDA-approved antidepressant drug, able to inhibit in vitro the E3 ubiquitin ligase Itch and potentiate the pro-apoptotic effects of DNA damaging induced agents in several cancer cell lines. Here, we investigated the potential therapeutic effect of desmethylclomipramine (DCMI), the active metabolite of Clomipramine, on the CSCs homeostasis. We show that DCMI inhibits lung CSCs growth, decreases their stemness potential and increases the cytotoxic effect of conventional chemotherapeutic drugs. Being DCMI an inhibitor of the E3 ubiquitin ligase Itch, we also verified the effect of Itch deregulation on CSCs survival. We found that the siRNA-mediated depletion of Itch induces similar anti-proliferative effects on lung CSCs, suggesting that DCMI might exert its effect, at least in part, by inhibiting Itch. Notably, Itch expression is a negative prognostic factor in two primary lung tumors datasets, supporting the potential clinical relevance of Itch inhibition to circumvent drug resistance in the treatment of lung cancer

    Dynamics of humoral and cellular response to three doses of anti-SARS-CoV-2 BNT162b2 vaccine in patients with hematological malignancies and older subjects

    Get PDF
    Background: Few data are available about the durability of the response, the induction of neutralizing antibodies, and the cellular response upon the third dose of the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in hemato-oncological patients. Objective: To investigate the antibody and cellular response to the BNT162b2 vaccine in patients with hematological malignancy. Methods: We measured SARS-CoV-2 anti-spike antibodies, anti-Omicron neutralizing antibodies, and T-cell responses 1 month after the third dose of vaccine in 93 fragile patients with hematological malignancy (FHM), 51 fragile not oncological subjects (FNO) aged 80-92, and 47 employees of the hospital (healthcare workers, (HW), aged 23-66 years. Blood samples were collected at day 0 (T0), 21 (T1), 35 (T2), 84 (T3), 168 (T4), 351 (T pre-3D), and 381 (T post-3D) after the first dose of vaccine. Serum IgG antibodies against S1/S2 antigens of SARS-CoV-2 spike protein were measured at every time point. Neutralizing antibodies were measured at T2, T3 (anti-Alpha), T4 (anti-Delta), and T post-3D (anti-Omicron). T cell response was assessed at T post-3D. Results: An increase in anti-S1/S2 antigen antibodies compared to T0 was observed in the three groups at T post-3D. After the third vaccine dose, the median antibody level of FHM subjects was higher than after the second dose and above the putative protection threshold, although lower than in the other groups. The neutralizing activity of antibodies against the Omicron variant of the virus was tested at T2 and T post-3D. 42.3% of FHM, 80,0% of FNO, and 90,0% of HW had anti-Omicron neutralizing antibodies at T post-3D. To get more insight into the breadth of antibody responses, we analyzed neutralizing capacity against BA.4/BA.5, BF.7, BQ.1, XBB.1.5 since also for the Omicron variants, different mutations have been reported especially for the spike protein. The memory T-cell response was lower in FHM than in FNO and HW cohorts. Data on breakthrough infections and deaths suggested that the positivity threshold of the test is protective after the third dose of the vaccine in all cohorts. Conclusion: FHM have a relevant response to the BNT162b2 vaccine, with increasing antibody levels after the third dose coupled with, although low, a T-cell response. FHM need repeated vaccine doses to attain a protective immunological response

    Regulation of {ERAP}1 and {ERAP}2 genes and their disfunction in human cancer

    No full text
    The endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 are two multifunctional enzymes playing an important role in the biological processes requiring trimming of substrates, including the generation of major histocompatibility complex (MHC) class I binding peptides. In the absence of ERAP enzymes, the cells exhibit a different pool of peptides on their surface which can promote both NK and CD8+ T cell-mediated immune responses. The expression of ERAP1 and ERAP2 is frequently altered in tumors, as compared to their normal counterparts, but how this affects tumor growth and anti-tumor immune responses has been little investigated. This review will provide an overview of current knowledge on transcriptional and post-transcriptional regulations of ERAP enzymes, and will discuss the contribution of recent studies to our understanding of ERAP1 and ERAP2 role in cancer immunity

    The {BET}-bromodomain inhibitor {JQ}1 renders neuroblastoma cells more resistant to {NK} cell-mediated recognition and killing by downregulating ligands for {NKG}2D and {DNAM}1 receptors

    No full text
    Low expression of ligands for NK cell-activating receptors contributes to neuroblastoma (NB) aggressiveness. Recently, we demonstrated that the expression of MYCN, a poor prognosis marker in NB, inversely correlates with that of activating ligands. This indicates that MYCN expression level can predict the susceptibility of NB cells to NK cell-mediated immunotherapy and that its downregulation can be exploited as a novel therapeutic strategy to induce the expression of activating ligands. Here we evaluated the effect of the BET-bromodomain inhibitor JQ1 on the expression of ligands for NK cell-activating receptors in NB cell lines. Although downmodulating MYCN, JQ1 impaired the expression of ligands for NK cell-activating receptors, rendering NB cell lines more resistant to NK cell-mediated killing. The downregulation of activating ligands was due to JQ1-mediated impaired functions of both c-MYC and p53, two transcription factors known to regulate the expression of ULBP1-3 ligands for NKG2D activating receptor. Moreover JQ1 strongly downregulated the levels of ROS, a stress-induced signaling event associated with the induction of ligands for NK cell-activating receptors. These results suggest that the use of JQ1 should be discourage in combination with NK cell-based immunotherapy in a perspective chemotherapeutic treatment of NB. Thus, further investigations, exploiting molecular strategies aimed to boost the NK cell-mediated killing of NB cells, are warranted

    Neoantigen cancer vaccine augments anti-CTLA-4 efficacy

    No full text
    AbstractImmune checkpoint inhibitors (ICI) based on anti-CTLA-4 (αCTLA-4) and anti-PD1 (αPD1) are being tested in combination with different therapeutic approaches including other immunotherapies such as neoantigen cancer vaccines (NCV). Here we explored, in two cancer murine models, different therapeutic combinations of ICI with personalized DNA vaccines expressing neoantigens and delivered by electroporation (EP). Anti-cancer efficacy was evaluated using vaccines with or without CD4 epitopes. Therapeutic DNA vaccines showed synergistic effects in different therapeutic protocols including established large tumors. Flow cytometry (FC) was utilized to measure CD8, CD4, Treg, and switched B cells as well as neoantigen-specific immune responses, which were also measured by IFN-γ ELIspot. Immune responses were augmented in combination with αCTLA4 but not with αPD1 in the MC38 tumor-bearing mice, significantly impacting tumor growth. Similarly, neoantigen-specific T cell immune responses were enhanced in combined treatment with αCTLA-4 in the CT26 tumor model where large tumors regressed in all mice, while monotherapy with αCTLA-4 was less efficacious. In line with previous evidence, we observed an increased switched B cells in the spleen of mice treated with αCTLA-4 alone or in combination with NCV. These results support the use of NCV delivered by DNA-EP with αCTLA-4 and suggest a new combined therapy for clinical testing.</jats:p

    Antitumor efficacy of a neoantigen cancer vaccine delivered by electroporation is influenced by microbiota composition

    No full text
    International audienceCancer is a heterogeneous disease and its treatment remains unsatisfactory with inconstant therapeutic responses. This variability could be related, at least in part, to different and highly personalized gut microbiota compositions. Different studies have shown an impact of microbiota on antitumor therapy. It has been demonstrated that some gut bacteria influences the development and differentiation of immune cells, suggesting that different microbiota compositions could affect the efficacy of the antitumor vaccine. Emerging data suggest that recognition of neoantigens for the generation of neoantigen cancer vaccines (NCVs) could have a key role in the activity of clinical immunotherapies. However, it is still unknown whether there is a crosstalk between microbiota and NCV. This study aimed to understand the possible mechanisms of interaction between gut microbiota and NCV delivered by DNA-electroporation (DNA-EP). We found that decreased microbiota diversity induced by prolonged antibiotic (ATB) treatment is associated with higher intratumor specific immune responses and consequently to a better antitumor effect induced by NCV delivered by DNA-EP
    corecore