20 research outputs found

    Intracranial fusarium fungal abscess in an immunocompetent patient: case report and review of the literature.

    Get PDF
    Introduction Fusarium spp is an omnipresent fungal species that may lead to fatal infections in immunocompromised populations. Spontaneous intracranial infection by Fusarium spp in immunocompetent individuals is exceedingly rare. Case Report An immunocompetent 33-year-old Hispanic woman presented with persistent headaches and was found to have a contrast-enhancing mass in the left petrous apex and prepontine cistern. She underwent a subsequent craniotomy for biopsy and partial resection that revealed a Fusarium abscess. She had a left transient partial oculomotor palsy following the operation that resolved over the next few weeks. She was treated with long-term intravenous antifungal therapy and remained at her neurologic baseline 18 months following the intervention. Discussion To our knowledge, this is the first reported case of Fusarium spp brain abscess in an immunocompetent patient. Treatment options include surgical intervention and various antifungal medications. Conclusion This case demonstrates the rare potential of intracranial Fusarium infection in the immunocompetent host, as well as its successful treatment with surgical aspiration and antifungal therapy

    Nuclear factor IA is expressed in astrocytomas and is associated with improved survival

    Get PDF
    Nuclear factor IA (NFIA) is a transcription factor that specifies glial cell identity and promotes astrocyte differentiation during embryonic development. Its expression and function in gliomas are not known. Here, we examined NFIA protein expression in gliomas and its association with clinical outcome in pediatric malignant astrocytomas. We analyzed expression of NFIA by immunohistochemistry in 88 existing glioma specimens from Childrens Hospital Los Angeles and the University of Southern California. Association between NFIA expression and progression-free survival (PFS) was examined in high-grade astrocytomas for which clinical data were available (n = 23, all children). NFIA was highly expressed in astrocytomas of all grades, but only in a minority of cells in oligodendroglial tumors. NFIA was expressed on a higher percentage of tumor cells in low-grade astrocytomas (91 ± 5% and 77 ± 14% in World Health Organization [WHO] I and II, respectively) compared with high-grade astrocytomas (48 ± 18% and 37 ± 16% in WHO III and IV, respectively; P < .001, low- vs high-grade astrocytomas). There was a significant association between NFIA expression and PFS in children with astrocytoma WHO grade III or IV (Cox regression P = .019; logrank trend test for NFIA tertiles P = .0040 and NFIA quartiles P = .014). The association was not consistently significant in this small series of patients after adjustment was made for WHO grade III or IV. This is the first study to demonstrate expression of NFIA protein in astrocytomas and its association with grades of astrocytoma and PFS, suggesting that NFIA may play a role in astrocytoma biology

    Intracranial Fusarium Fungal Abscess in an Immunocompetent Patient: Case Report and Review of the Literature

    No full text
    Introduction Fusarium spp is an omnipresent fungal species that may lead to fatal infections in immunocompromised populations. Spontaneous intracranial infection by Fusarium spp in immunocompetent individuals is exceedingly rare. Case Report An immunocompetent 33-year-old Hispanic woman presented with persistent headaches and was found to have a contrast-enhancing mass in the left petrous apex and prepontine cistern. She underwent a subsequent craniotomy for biopsy and partial resection that revealed a Fusarium abscess. She had a left transient partial oculomotor palsy following the operation that resolved over the next few weeks. She was treated with long-term intravenous antifungal therapy and remained at her neurologic baseline 18 months following the intervention. Discussion To our knowledge, this is the first reported case of Fusarium spp brain abscess in an immunocompetent patient. Treatment options include surgical intervention and various antifungal medications. Conclusion This case demonstrates the rare potential of intracranial Fusarium infection in the immunocompetent host, as well as its successful treatment with surgical aspiration and antifungal therapy

    Human immunodeficiency virus type 1 in the central nervous system leads to decreased dopamine in different regions of postmortem human brains.

    No full text
    Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) shortly after infection and becomes localized in varying concentrations in different brain regions, the most vulnerable is the basal ganglia (BG). It is hypothesized that HIV-1-mediated neuropathogenesis involves degeneration of dopaminergic neurons in the substantia nigra and the loss of dopaminergic terminals in the BG, leading to deficits in the central dopaminergic activity, resulting in progressive impairment of neurocognitive and motor functions. In the era of highly active antiretroviral therapy (HAART), although the incidence of HIV-associated dementia (HAD) has decreased, the neurocognitive and neuropsychological deficits continue to persist after HAART. In this study, We investigated the impact of HIV-1 on dopaminergic activity with respect to concentrations of dopamine (DA) and homovanillic acid (HVA) in different regions of postmortem human brains of HIV-1-negative and HIV-1+ individuals and their relationship to neurocognitive impairment. We found that in HIV-1+ as well as HIV-negative cases, dopamine and HVA concentrations in ranged widely in different brain regions. In HIV-negative brain regions, the highest concentration of DA was found in putamen, caudate, substantia nigra, and the basal ganglia. In HIV-1+ cases, there was a significant decrease in DA levels in caudate nucleus, putamen, globus pallidus, and substantia nigra compared to that in HIV-negative cases. In HIV-1+ cases, a strong correlation was found between DA levels in substantia nigra and other brain regions. Concentration of HVA in HIV-negative cases was also highest in the regions containing high dopamine levels. However, no significant decrease in regional HVA levels was found in HIV-1+ cases. HIV-1 RNA load (nondetectable [ND] to log10 6.9 copies/g tissue) also ranged widely in the same brain regions of HIV-1+ cases. Interestingly, the brain regions having the highest HIV-1 RNA had the maximum decrease in DA levels. Age, gender, ethnicity, and postmortem interval were not correlated with decrease in DA levels. Profile of DA, HVA, and HIV-1 RNA levels in the brain regions of HIV-1+ individuals treated with HAART was similar to those not treated with HAART. A majority of HIV-1+ individuals had variable degrees of neurocognitive impairments, but no specific relationship was found between the regional DA content and severity of neurocognitive deficits. These findings suggest widespread deficits in dopamine in different brain regions of HIV-1-infected cases, and that these deficits may be the results of HIV-1-induced neurodegeneration in the subcortical regions of human brain

    Neurovirological correlation with HIV-associated neurocognitive disorders and encephalitis in a HAART-era cohort.

    No full text
    ObjectiveReplicating HIV-1 in the brain is present in HIV encephalitis (HIVE) and microglial nodule encephalitis (MGNE) and is putatively linked with HIV-associated neurocognitive disorders (HAND). A cliniconeurovirological correlation was conducted to elucidate the relationship between brain viral load and clinical phenotype. SUBJECTS AND ASSAYS: HIV gag/pol RNA and DNA copies were quantified with reverse transcriptase-polymerase chain reaction or polymerase chain reaction in 148 HAART-era brain specimens. Comparison with HAND, HIVE, and MGNE and correlation with neuropsychological (NP) test scores were done using one-way ANOVA with Tukey-Kramer and Spearman tests, respectively.ResultsBrain HIV RNA was higher in subjects with HAND plus HIVE versus without HAND (delta = 2.48 log10 units, n = 27 versus 36, P &lt; 0.001). In HAND without HIVE or MGNE, brain HIV RNA was not significantly different versus without HAND (P = 0.314). Worse NP scores correlated significantly with higher HIV RNA and interferon responses in brain specimens (P &lt; 0.001) but not with HIV RNA levels in premortem blood plasma (n = 114) or cerebrospinal fluid (n = 104). In subjects with MGNE, brain HIV RNA was slightly higher versus without MGNE (P &lt; 0.01) and much lower versus with HIVE (P &lt; 0.001).ConclusionsBrain HIV RNA and to a lesser extent HIV DNA are correlated with worse NP performance in the 6 months before death. Linkage occurs primarily in patients with HIVE and MGNE, and these patients could obtain added NP improvement by further reducing brain HIV while on HAART. Patients not in those groups are less certain to obtain added NP benefit

    HIV DNA Is Frequently Present within Pathologic Tissues Evaluated at Autopsy from Combined Antiretroviral Therapy-Treated Patients with Undetectable Viral Loads

    No full text
    HIV infection treatment strategies have historically defined effectiveness through measuring patient plasma HIV RNA. While combined antiretroviral therapy (cART) can reduce plasma viral load (pVL) to undetectable levels, the degree that HIV is eliminated from other anatomical sites remains unclear. We investigated the HIV DNA levels in 229 varied autopsy tissues from 20 HIV-positive (HIV(+)) cART-treated study participants with low or undetectable plasma VL and cerebrospinal fluid (CSF) VL prior to death who were enrolled in the National Neurological AIDS Bank (NNAB) longitudinal study and autopsy cohort. Extensive medical histories were obtained for each participant. Autopsy specimens, including at least six brain and nonbrain tissues per participant, were reviewed by study pathologists. HIV DNA, measured in tissues by quantitative and droplet digital PCR, was identified in 48/87 brain tissues and 82/142 nonbrain tissues at levels >200 HIV copies/million cell equivalents. No participant was found to be completely free of tissue HIV. Parallel sequencing studies from some tissues recovered intact HIV DNA and RNA. Abnormal histological findings were identified in all participants, especially in brain, spleen, lung, lymph node, liver, aorta, and kidney. All brain tissues demonstrated some degree of pathology. Ninety-five percent of participants had some degree of atherosclerosis, and 75% of participants died with cancer. This study assists in characterizing the anatomical locations of HIV, in particular, macrophage-rich tissues, such as the central nervous system (CNS) and testis. Additional studies are needed to determine if the HIV recovered from tissues promotes the pathogenesis of inflammatory diseases, such as HIV-associated neurocognitive disorders, cancer, and atherosclerosis. IMPORTANCE It is well-known that combined antiretroviral therapy (cART) can reduce plasma HIV to undetectable levels; however, cART cannot completely clear HIV infection. An ongoing question is, “Where is HIV hiding?” A well-studied HIV reservoir is “resting” T cells, which can be isolated from blood products and succumb to cART once activated. Less-studied reservoirs are anatomical tissue samples, which have unknown cART penetration, contain a comparably diverse spectrum of potentially HIV-infected immune cells, and are important since <2% of body lymphocytes actually reside in blood. We examined 229 varied autopsy specimens from 20 HIV(+) participants who died while on cART and identified that >50% of tissues were HIV infected. Additionally, we identified considerable pathology in participants' tissues, especially in brain, spleen, lung, lymph node, liver, aorta, and kidney. This study substantiates that tissue-associated HIV is present despite cART and can inform future studies into HIV persistence

    HIV DNA Is Frequently Present within Pathologic Tissues Evaluated at Autopsy from Combined Antiretroviral Therapy-Treated Patients with Undetectable Viral Loads.

    No full text
    UnlabelledHIV infection treatment strategies have historically defined effectiveness through measuring patient plasma HIV RNA. While combined antiretroviral therapy (cART) can reduce plasma viral load (pVL) to undetectable levels, the degree that HIV is eliminated from other anatomical sites remains unclear. We investigated the HIV DNA levels in 229 varied autopsy tissues from 20 HIV-positive (HIV(+)) cART-treated study participants with low or undetectable plasma VL and cerebrospinal fluid (CSF) VL prior to death who were enrolled in the National Neurological AIDS Bank (NNAB) longitudinal study and autopsy cohort. Extensive medical histories were obtained for each participant. Autopsy specimens, including at least six brain and nonbrain tissues per participant, were reviewed by study pathologists. HIV DNA, measured in tissues by quantitative and droplet digital PCR, was identified in 48/87 brain tissues and 82/142 nonbrain tissues at levels &gt;200 HIV copies/million cell equivalents. No participant was found to be completely free of tissue HIV. Parallel sequencing studies from some tissues recovered intact HIV DNA and RNA. Abnormal histological findings were identified in all participants, especially in brain, spleen, lung, lymph node, liver, aorta, and kidney. All brain tissues demonstrated some degree of pathology. Ninety-five percent of participants had some degree of atherosclerosis, and 75% of participants died with cancer. This study assists in characterizing the anatomical locations of HIV, in particular, macrophage-rich tissues, such as the central nervous system (CNS) and testis. Additional studies are needed to determine if the HIV recovered from tissues promotes the pathogenesis of inflammatory diseases, such as HIV-associated neurocognitive disorders, cancer, and atherosclerosis.ImportanceIt is well-known that combined antiretroviral therapy (cART) can reduce plasma HIV to undetectable levels; however, cART cannot completely clear HIV infection. An ongoing question is, "Where is HIV hiding?" A well-studied HIV reservoir is "resting" T cells, which can be isolated from blood products and succumb to cART once activated. Less-studied reservoirs are anatomical tissue samples, which have unknown cART penetration, contain a comparably diverse spectrum of potentially HIV-infected immune cells, and are important since &lt;2% of body lymphocytes actually reside in blood. We examined 229 varied autopsy specimens from 20 HIV(+) participants who died while on cART and identified that &gt;50% of tissues were HIV infected. Additionally, we identified considerable pathology in participants' tissues, especially in brain, spleen, lung, lymph node, liver, aorta, and kidney. This study substantiates that tissue-associated HIV is present despite cART and can inform future studies into HIV persistence
    corecore