103 research outputs found

    On a correspondence between quantum SU(2), quantum E(2) and extended quantum SU(1,1)

    Full text link
    In a previous paper, we showed how one can obtain from the action of a locally compact quantum group on a type I-factor a possibly new locally compact quantum group. In another paper, we applied this construction method to the action of quantum SU(2) on the standard Podles sphere to obtain Woronowicz' quantum E(2). In this paper, we will apply this technique to the action of quantum SU(2) on the quantum projective plane (whose associated von Neumann algebra is indeed a type I-factor). The locally compact quantum group which then comes out at the other side turns out to be the extended SU(1,1) quantum group, as constructed by Koelink and Kustermans. We also show that there exists a (non-trivial) quantum groupoid which has at its corners (the duals of) the three quantum groups mentioned above.Comment: 35 page

    Enhancing proton mobility in polymer electrolyte membranes : lessons from molecular dynamic simulation

    Get PDF
    Typical proton-conducting polymer electrolyte membranes (PEM) for fuel cell applications consist of a perfluorinated polymeric backbone and side chains with SO3H groups. The latter dissociate upon sufficient water uptake into SO3- groups on the chains and protons in the aqueous subphase, which percolates through the membrane. We report here systematic molecular dynamics simulations of proton transport through the aqueous subphase of wet PEMs. The simulations utilize a recently developed simplified version (Walbran, A.; Kornyshev, A. A. J. Chem. Phys. 2001, 114, 10039) of an empirical valence bond (EVB) model, which is designed to describe the structural diffusion during proton transfer in a multiproton environment. The polymer subphase is described as an excluded volume for water, in which pores of a fixed slab-shaped geometry are considered. We study the effects on proton mobility of the charge delocalization inside the SO3- groups, of the headgroup density (PPM "equivalent weight"), and of the motion of headgroups and side chains. We analyze the correlation between the proton mobility and the degree of proton confinement in proton-carrying clusters near SO3- parent groups. We have found and rationalized the following factors that facilitate the proton transfer: (i) charge delocalization within the SO3- groups, (ii) fluctuational motions of the headgroups and side chains, and (iii) water content
    corecore