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ABSTRACT 13 

Large-scale controlled source electromagnetic (CSEM) three-dimensional (3D) 14 

geophysical imaging is now receiving considerable attention for electrical conductivity 15 

mapping of potential offshore oil and gas reservoirs. To cope with the typically large 16 

computational requirements of the 3D CSEM imaging problem, our strategies exploit 17 

computational parallelism and optimized finite-difference meshing. We report on an 18 

imaging experiment, utilizing 32,768 tasks/processors on the IBM Watson Research Blue 19 

Gene/L (BG/L) supercomputer. Over a 24-hour period, we were able to image a large-20 

scale marine CSEM field data set that previously required over four months of computing 21 

time on distributed clusters utilizing 1024 tasks on an Infiniband fabric. The total initial 22 
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data misfit could be decreased by 67 % within 72 completed inversion iterations, 23 

indicating an electrically resistive region in the southern survey area below a depth of 24 

1500 m below the seafloor. The major part of the residual misfit stems from transmitter-25 

parallel receiver components that have an offset from the transmitter sail line (broadside 26 

configuration). Modeling confirms that improved broadside data fits can be achieved by 27 

considering anisotropic electrical conductivities. While delivering a satisfactory gross-28 

scale image for the depths of interest, the experiment provides important evidence for the 29 

necessity of discriminating between horizontal and vertical conductivities for maximally 30 

consistent 3D CSEM inversions. 31 

 32 

INTRODUCTION 33 

Seismic methods have a long and established history in hydrocarbon, i.e. oil and gas, 34 

exploration, and are proven very effective in mapping geologic reservoir formations. 35 

However, they are not good at discriminating the different types of reservoir fluids 36 

contained in the rock pore space, such as brines, water, oil and gas. This has encouraged 37 

the development of new geophysical technologies that can be combined with established 38 

seismic methods to directly image fluids. One technique that has recently emerged, with 39 

considerable potential, utilizes low frequency electromagnetic (EM) energy to map 40 

variations in the subsurface electrical conductivity, σ ([σ]=S/m), or its reciprocal 41 

([1/σ]=Ωm), usually called resistivity, of offshore oil and gas prospects [1, 2, 3, 4 and 5]. 42 

Resistivity is a more  meaningful quantity for imaging hydrocarbons. An increase, 43 

compared to the surrounding geological strata, may directly indicate potential reservoirs. 44 



EM field measurements have been shown to be highly sensitive to changes in the pore 45 

fluid types and the location of hydrocarbons, given a sufficient resistivity contrast to fluids 46 

like brine or water. 47 

With the marine controlled-source electromagnetic (CSEM) measurement technique, a 48 

deep-towed electric-dipole transmitter is used to excite a low-frequency (~0.1 to 10 Hz) 49 

electromagnetic signal that is measured on the seafloor by electric and magnetic field 50 

detectors, where the largest transmitter-detector offsets can exceed 15 km. To cover larger 51 

depth ranges, multiple transmitter frequencies are usually employed in a survey. Similar to 52 

acoustic wave propagation, the attenuation rate with exploration depth increases with the 53 

frequency. Current technologies require low frequency EM signals (< 1 Hz) to interrogate 54 

down to reservoir depths as large as 4 km. 55 

Exploration with the CSEM technology in the search for hydrocarbons now extends to 56 

highly complex and subtle offshore geological environments. The geometries of the 57 

reservoirs are inherently 3D and exceedingly difficult to map without recourse to 3D EM 58 

imaging experiments, requiring fine model parameterizations, spatially exhaustive survey 59 

coverage and multi-component data. The 3D imaging problem, in this paper also referred 60 

to as inversion problem, usually has large computational demands, owing to the expensive 61 

solution of the forward modeling problem, that is the EM field simulation on a given 3D 62 

finite-difference (FD) grid. Moreover, large data volumes require many forward solutions 63 

in an iterative inversion scheme. Therefore, we have developed an imaging algorithm that 64 

utilizes two levels of parallelization, one over the modeling/imaging volume, and the other 65 

over the data volume. The algorithm is designed for arbitrarily large data sets, allowing for 66 



an arbitrarily large number of parallel tasks, while the computationally idle message 67 

passing is minimized. We have further incorporated an optimal meshing scheme that 68 

allows us to separate the imaging/modeling mesh from the simulation mesh. This provides 69 

for significant acceleration of the 3D EM field simulation, directly impacting the time to 70 

solution for the 3D imaging process. 71 

Here, we report an imaging experiment, utilizing 32,768 tasks/processors on the IBM 72 

Watson Research BG/L  supercomputer. The experiment is a novelty both in terms of 73 

computational resources utilized and amount of data inverted. Its main purpose is a 74 

feasibility study for the effectiveness of the employed algorithm. Further, the results 75 

obtained will improve both important base knowledge for the design of upcoming large-76 

scale CSEM surveys and the automated imaging method for data interpretation. 77 

 78 

  79 

PROBLEM FORMULATION 80 

 We formulate the inverse problem by finding a model m with m piecewise constant 81 

electrical conductivity parameters that describe the earth model reproducing a given data 82 

set. Specifically, the inversion algorithm minimizes the error functional, 83 

   φ = ½ {D(dp - dobs)T*{D(dp - dobs)} + ½ λ {Wm}
T
{Wm},          (1) 84 

where T
*
 denotes the Hermitian conjugate operator. In the above expression, the predicted 85 

(from a starting model) and observed data vectors are denoted by d
p
 and d

obs
, respectively, 86 

where each has n complex values. These vectors consist of electric or magnetic field 87 



values specified at the measurement points, where the predicted data are determined 88 

through solution of the time harmonic 3D Maxwell equations in the diffusive 89 

approximation. We have also introduced a diagonal weighting matrix, Dnxn, into the error 90 

functional to compensate for noisy measurements. To stabilize the minimization of (1) and 91 

to reduce model curvature in three dimensions, we introduce a matrix Wmxm based upon a 92 

FD approximation to the Laplacian (∇2) operator applied in Cartesian coordinates. The 93 

parameter λ attempts to balance the data error and the model smoothness constraint. 94 

 95 

The Forward Problem 96 

Within an inversion framework, the forward problem is solved multiple times to simulate 97 

the EM field, denoted by the vector E, and thus the data d
p
 for a given model m. EM wave 98 

propagation is controlled by the vector Helmholtz equation, 99 

Jii 00 ωµσωµ −=Ε+Ε×∇×∇  (2) 

where source vector, free-space magnetic permeability, and angular frequency are denoted 100 

by J, µ0, and ω, respectively (see [6] for specific details). Our solution method is based 101 

upon the consideration that the number of model parameters required to simulate realistic 102 

3D distributions of the electrical conductivity σ can typically exceed 107. FD modeling 103 

schemes are ideally suited for this task and can be parallelized to handle large-scale 104 

problems that cannot be easily treated otherwise [6]. After approximating equation (2) on a 105 

staggered grid at a specific angular frequency, using finite differencing and eliminating the 106 

magnetic field, we obtain a linear system for the electric field, 107 



 108 

KE=S (3) 

  109 

where K is a sparse complex symmetric matrix with 13 non-zero entries per row [6]. The 110 

diagonal entries of K depend explicitly on the conductivity parameters that we seek to 111 

estimate through the inversion process.  Since the electric field, E, also depends upon the 112 

conductivity, implicitly, this gives rise to the nonlinearity of the inverse problem. The 113 

fields are sourced with a grounded wire or loop embedded within the modeling domain, 114 

described by the discrete source vector, S, and includes Dirichlet boundary conditions 115 

imposed upon the problem. To help avoid excessive meshing near the source, we favor a 116 

scattered-field formulation to the forward modeling problem. In this instance, E is 117 

replaced with Es in equation (3). The source term, for a given transmitter, will now depend 118 

upon the difference between the 3D conductivity model and a simple background model, 119 

weighted by the background electric field Eb, where E=Eb+ Es. Simple background 120 

models with one-dimensional (1D) conductivity distributions, i.e. σ changes only with 121 

depth, are used because fast semi-analytical solutions for Eb are available. Given the 122 

solution of the electric field in equation (3), the magnetic field can be easily determined 123 

from a numerical implementation of Faraday’s law. An efficient solution process is 124 

paramount. We solve equation (3) to a predetermined error level using iterative Krylov 125 

subspace methods, using either a biconjugate gradient (BICG) or quasi-minimum residual 126 

(QMR) scheme with preconditioning [6].  127 

 128 



Minimization Procedure 129 

In large-scale nonlinear inverse problems, as considered here, we minimize (1) using 130 

gradient-based optimization techniques because of their minimal storage and 131 

computational requirements. We characterize these methods as gradient-based techniques 132 

because they employ only first derivative information of the error functional in the 133 

minimization process, specifically -∇∇∇∇φ. Gradient-based methods include steepest decent, 134 

nonlinear conjugate gradient and limited memory quasi-Newton schemes, where the latter 135 

usually provide the best inverse solution convergence, however at a larger computational 136 

expense. Solution accelerators are discussed in [7], also providing detailed derivation of 137 

the gradients and an efficient scheme for their computation. Here, we focus on a non-linear 138 

conjugate gradient (NLCG) minimization approach as a tradeoff between inverse solution 139 

convergence and computational effort per inversion iteration.  140 

 141 

Exploitation of Solution Parallelism 142 

In order to realistically image the subsurface of large survey areas at a sufficient level of 143 

resolution and detail, industrial CSEM data sets can contain up to hundreds of transmitter-144 

receiver arrays, operating at different frequencies, with a spatial covering of more than 145 

1000 km
2
. This easily requires thousands of solutions to the forward modeling problem for 146 

just one imaging experiment. Hence, the computational demands for solving the 3D 147 

inverse problem are enormous. To cope with this problem, our algorithm utilizes two 148 

levels of parallelization, one over the modeling domain, and the other over the data 149 

volume. 150 



First, in solving the forward problem on a distributed environment, we split up the FD 151 

simulation grid, not the matrix, amongst a Cartesian processor topology, which shall be 152 

called local communicator (LC). As the linear system is relaxed during the iterative 153 

solution, which involves matrix-vector products on each of the processors, values of the 154 

solution vector at the current Krylov iteration not stored on the processor must be passed 155 

by neighbors within LC to complete the matrix-vector products. Additional global 156 

communication across the LC is needed to complete several dot products at each 157 

relaxation step of the Krylov iteration. The solution time increases linearly with the 158 

number of parallel tasks, up to a point where the message passing overhead increase 159 

dominates. A study of the flop rate versus communicator size for the Intel Paragon 160 

architecture is exemplified in [6]. 161 

To carry out many forward simulations simultaneously, we employ multiple LCs, 162 

connected via a group of lead processors, with one lead task assigned to each LC. The 163 

topology of this lead group defines the communicator on which the iterative NLCG 164 

inversion framework is carried out, here called the global communicator (GC). This 165 

distribution of the forward modeling problems, or data decomposition, is highly parallel. 166 

Assuming the optimal LC size has been estimated for a given range of mesh sizes, the size 167 

of the GC (equals the number of LCs) can be increased linearly with the data volume. The 168 

relative amount of communication within the GC remains constant, because 169 

communication within the GC is only needed in order to complete several dot products per 170 

inversion iteration and to sum up the contributions from each LC to the global gradient 171 

vector. The main computational and communication burden occurs with the forward FD 172 



solves. As outlined below, we adapt FD mesh sizes according to given transmitter-receiver 173 

configurations and minimum spatial sampling requirements. To keep a balanced workload 174 

between all LCs, the data decomposition is based on a balanced distribution of the FD 175 

grids in terms of grid sizes. 176 

 177 

Optimal Mesh Considerations 178 

Although our experience using two parallelization levels has been satisfactory, to solve the 179 

very large problems of interest requires us to obtain a higher level of efficiency. One 180 

promising approach, which we have previously reported in [8], is to design an optimal FD 181 

simulation mesh for each source excitation in equation (3). FD meshing for field 182 

simulation then only considers part of the total model volume where it can have an 183 

appreciable effect in the imaging process. Moreover, minimum spatial grid sampling 184 

intervals are dictated by the EM field wavelength, and hence can be optimized according 185 

to a specific source excitation frequency. Optimizing both mesh size and spatial sampling, 186 

we create a collection of simulation grids, Ωs, that support the EM field simulation for all 187 

different source activations contained in the data set. All simulation grids act upon a 188 

common model grid, Ωm, which defines the imaging volume. Both types of grids are 189 

Cartesian with conformal grid axes. Key to the grid separation is an appropriate mapping 190 

scheme that transfers the material properties from Ωm to Ωs. The imaging process provides 191 

piecewise constant estimates of the electrical conductivity, which are defined by the cells 192 

of Ωm. The staggered FD mesh Ωs, on the other hand, involves edge-based directional 193 

conductivities, needed for constructing the stiffness matrix K in equation (3) (see also [6] 194 



and [9] for details). In the case Ωm = Ωs, an edge conductivity, σ
e
, is computed from 195 

∑
=

=
4

1i

ii

e wσσ , with ∑
=

=
4

1j

jii dVdVw . Here 
i

w  are weights corresponding to volume 196 

fractions of the four cells on Ωm, that share the edge σ
e on Ωs. Furthermore, the edge 197 

conductivity σe is simply an arithmetic volume average of the four model cell 198 

conductivities. When Ωm ≠ Ωs, the conductivity mapping involves parallel/serial circuit 199 

analysis resulting in an arithmetic and harmonic conductivity averaging scheme of [8,10]. 200 

The averaging scheme is exemplified for an x-directed edge conductivity σx
e
 in two 201 

dimensions in Figure 1. Here, model and simulation meshes are represented by dashed and 202 

solid lines, respectively. The material average is to be specified from the formula 203 
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The inner integration constitutes a point wise parallel conductivity average, while the outer 204 

integration provides for the effective conductivity in series, arising over the integrated 205 

edge length (xi+1- xi) of the simulation mesh. The total integration area assigned to σx
e
 is 206 

shown by the red rectangle. 207 

Extension to the full 3D case is straightforward, with the discrete representation 208 

exemplified by  209 
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where ∆X is the edge length of the simulation cell along the x-coordinate direction. 210 

Similarly, σy
e
 and σz

e
 involve averaging along the y- and z-coordinates, respectively. Now 211 

the averaging along ∆X  involves a number of J serially connected discrete parallel 212 

circuits, jP , each with a volume jV . The length of jP  along the edge is j∆x , 213 

where ∆X∆x
J

1j j
=∑ =

. Further, jI is the number of cells on the modeling grid contributing 214 

to jP , with iσ  and idV  the individual model cell conductivity and volume fraction, 215 

respectively. 216 

We are also required to specify k

e σσ ∂∂ / which is needed to define the gradient on the 217 

modeling grid, because it is linked to the forward modeling problem on the simulation 218 

grid(s) (see [9] for details on the equal-grid case). Thus 219 
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where J is now the number of discrete parallel circuits with a non-zero contribution 220 

from kσ . When Ωm = Ωs, we have J=1, j∆x = ∆X and =∂∂ k

e σσ / kw , which is the 221 

weighting coefficient defined above as ∑
=

=
4

1j

jkk dVdVw . 222 

 223 

ELECTRICAL-CONDUCTIVITY IMAGING OF HYDROCARBONS USING 224 

THE BLUE GENE/L SUPERCOMPUTER 225 

CSEM data is usually characterized by a large dynamic range, which can reach more than 226 

ten orders of magnitude. This requires the ability to analyze it in a self-consistent manner 227 



that incorporates all structures not only on the reservoir scale at tens of meters, but on the 228 

geological basin scale at tens of kilometers, and must include salt domes, detail 229 

bathymetry, and other 3D peripheral geology structures that can influence the 230 

measurements [11, 12]. These complications give rise to the need for an automated 3D 231 

conductivity inversion process for successful conductivity imaging of hydrocarbons. Trial-232 

and-error 3D forward modeling is too cumbersome to be effective. Both model size and 233 

amount of the required data provides ample justification for utilizing the IBM’s massively 234 

parallel BG/L supercomputer for the task. Such a platform which can scale up to 131,072 235 

processors, allows for the capability to image prospective oil and gas reservoirs at the 236 

highest resolution possible, and on time scales acceptable to the exploration process.  237 

The 3D imaging experiment we present here demonstrates the above mentioned points. 238 

The data were acquired offshore of South America. The sail lines and 23 detector locations 239 

on a 40×40 km2 grid used for subsurface conductivity mapping are shown in Figure 2. 240 

Data was collected from nearly 1 million binned transmitter sites along the shown sail 241 

lines. Obviously, this amount of data cannot be treated with the current inversion 242 

methodology  even with a massively parallel implementation. Every source treated by the 243 

imaging algorithm requires a forward simulation, an adjoint computation, and two or more 244 

additional simulations for step control for each non-linear inversion update. To efficiently 245 

deal with this data volume, we employ reciprocity. The positions of the real CSEM 246 

transmitter along the sail line become the computational receiver profiles, and the real 247 

CSEM detectors on the seafloor become computational sources, referred to as sources in 248 

the following. 249 



The equivalent reciprocal problem involves 951,423 data points and 207 effective sources, 250 

since there are 23 source locations with three polarizations and each operating at the three 251 

discrete excitation frequencies 0.125, 0.25, and 0.5 Hz. Each effective transmitter is 252 

polarized according to the antenna orientation of its corresponding detector. The exact 253 

seafloor detector orientations were determined by analyzing the data polarizations and 254 

phase reversals with respect to the source sail lines. Data processing involves binning in 255 

time, followed by spectral decomposition and spatial filtering. Timing errors were 256 

removed by forcing the data phases to match the frequency-offset scaling behavior 257 

appropriate to solutions of Maxwell's equations.   258 

The survey layout in Figure 2 contains different transmitter-receiver configurations to be 259 

considered, as is illustrated in the upper Figure 2. For the transmitter sail line position with 260 

respect to a given detector on the sea bottom, we consider the so-called overflight (a) 261 

configuration, where the sail line is directly over the detector. In the broadside 262 

configuration (b), the towed transmitter passes at an offset ∆y to one side of the detector. 263 

Three components are recorded by the detector’s receiver antennas: inline horizontal (Ex), 264 

perpendicular horizontal (Ey), and vertical (Ez) electric fields. 265 

A starting model is necessary to launch the inversion process and resolve some final issues 266 

associated with phase components in the data. It is obviously favorable to achieve 267 

minimum data misfits with the starting model. Therefore, the model used has been 268 

constructed from knowledge of the sea bottom bathymetry, the seawater electrical 269 

conductivity-versus-depth profile, and 1D inversion of the amplitude components of the 270 

common-receiver gathers, based on the inline overflight measurement configuration (Ex
i
). 271 



The resulting 1D models were then refined by comparing selected simulation results with 272 

field observations. To accommodate all sail lines and detector sites in the model, a large 273 

parameterization was required for Ωm. To model bathymetry, the minimum required 274 

spatial grid sampling interval ∆ is kept constant with ∆=125 m for the horizontal, x and y, 275 

coordinates, while it ranges from 50 to 200 m in z. This amounts to 403 nodes along x and 276 

y, and 173 nodes vertically, and thus approximately 27.8 million model cells.  277 

To restrict the size of the simulation grid for each source activation, we have assigned each 278 

a separate mesh. Both mesh size and spatial grid sampling rate are based on skin depth 279 

estimations. The skin depth δ, a commonly used constant in EM applications, is defined as 280 

the depth below the surface of a conductor (in our case at the transmitter location) at which 281 

the current density decays to 1/e (about 0.37) of the surface current density. Using the 282 

approximation, 283 

fbσδ /503= , 284 

mesh intervals depend on the source excitation frequency f and the background 285 

conductivity σb of the employed starting model. Horizontal mesh size is based on ten skin 286 

depths from the source midpoint, assuming σb=0.5 S/m; the resulting mesh ranges were of 287 

sufficient size to accommodate the specific sail lines of data assigned to the effective 288 

sources. The horizontal spatial grid sampling intervals vary with frequency, ∆=250, 200, 289 

and 125 m, for the frequencies f=0.125, 0.25, and 0.5 Hz, respectively. The vertical 290 

meshing was identical to that employed in the modeling mesh in order to honor the 291 

bathymetry. With these considerations, we were able to reduce the size of the simulation 292 



meshes significantly; the number of x and y grid nodes both ranged from 128 to 162. 293 

Solution accuracy was verified against solutions where Ωs=Ωm.  294 

A maximum of 256 Mbytes of memory per task was available on BG/L. The largest 295 

memory requirement results from temporary storage of the forward solutions within one 296 

inversion iteration. To stay within the machine limits each simulation grid was distributed 297 

across a local communicator size of 512 processors, relying on the inter-processor 298 

bandwidth to support the BiCG/QMR solves. Sixty-four local communicators were then 299 

used to distribute the 207 effective sources and its associated data. Thus the total number 300 

of tasks employed in the imaging experiment was 32,768.  Disk IO and file system 301 

performance were minor concerns, as the generated image output was relatively modest, 302 

approximately 2.5 Gbytes per inversion update, which was written to disk in parallel using 303 

512 tasks. Data output at each inversion iteration consisted of predicted and observed 304 

measurements with a total file size of 170 Mbytes. A lead task within the global 305 

communicator was assigned to dump the data output after each inversion update. 306 

Prior to the actual imaging experiment, performance tests were carried out. Base line 307 

evaluation involved an inversion where the large model grid (size 403×403×173 nodes) 308 

represented the simulation grid for each source. 309 

1) The job performance using 32 MPI tasks completed on BG/L (CPU speed 700 310 

MHz) and an Intel (Pentium 4, CPU speed 2.6 GHz) cluster with Gigabit Ethernet 311 

fabric was compared. A forward solution used 25 sec per 100 QMR iterations on 312 

BG/L, compared to 23 sec on the Intel P4 platform. The computational burden of 313 

the QMR solver is dominated by complex double precision matrix-vector 314 



multiplications with indexed memory access. BG/L’s 64-bit IBM Power 315 

architecture is designed for floating point operations achieving an efficient memory 316 

access. Profiling shows that for our application the architecture compensates for 317 

BG/L’s lower processor speed.  318 

2) Workload scalability tests revealed a linear QMR solution time decrease up to a 319 

number of 4096 tasks.  320 

3) A 1024-task job on BG/L showed that the communication averaged to about 25 % 321 

of the total solution time per inversion iteration. The distribution of the 322 

communication overhead is as follows. Collective communications within GC are 323 

mainly global reduction operations, and amount to about 50% with typical message 324 

sizes of 16 Bytes. Point-to-point blocking message passing within LC: 20 % with 325 

30 Kbytes average message size. Barrier synchronization: 30%. 326 

 327 

The relatively long idle time due to global barrier synchronization, which is done after 328 

each inversion iteration, indicates the importance of a balanced workload distribution 329 

among all LCs. The QMR solver convergence behavior depends on the condition number 330 

of the FD stiffness matrix K in equation (3), which in turn is governed by the aspect ratio 331 

and conductivity contrasts within Ωs. Because the latter changes dynamically with the 332 

model updates during an inversion, a faster barrier synchronization would require an 333 

adequate sophisticated scheme for dynamically adapting the LC size. 334 

Over a 24-hour period, 72 inversion model updates were realized on BG/L and the relative 335 

squared error misfit measure was reduced by nearly 67%. Exemplified in Figure 3, good 336 



fits, to within the anticipated noise, were obtained for the horizontal and vertical inline 337 

electric field overflight data, Ex
i
 (a) and Ez

i 
(b), as well for the horizontal perpendicular and 338 

vertical broadside electric fields, Ey
b
 (c) and Ez

b
 (d). We observed that the major residual 339 

misfits originate from the broadside inline components, Ex
b 
(e,f).    340 

The average resistivity computed over three depth ranges for solution 72 is shown in 341 

Figure 4. The sea bottom defines the depth z=0. Inspection of the images shows enhanced 342 

resistivity in the southern model section for depths below 1500 m. Such is also observed 343 

broadside of the sail lines, for the depth range 0-1500 m. Along the sail lines, however, 344 

little to no resistivity enhancement is observed and the imaged resistivity volume contains 345 

an unacceptable acquisition overprint. A possible explanation for this outcome is the 346 

inconsistencies observed in fitting the in-line component of the broadside data compared 347 

to other data components. This is particularly true of inline overflight data. Clearly, the 348 

overflight data will be most sensitive to resistivity variations along the sail lines, while 349 

broadside data are more sensitive to resistivity variations off the sail lines. One possibility 350 

for the enhanced resistivity observed off the sail lines arises from the inversion algorithm’s 351 

attempt to fit the inline broadside data. Enhanced resistivity amplifies the broadside inline 352 

model data, reducing the mismatch between observed and predicted data. Nevertheless, it 353 

was still not possible to achieve acceptable data fits indicating a systematic bias in the 354 

underlying assumptions employed in the inversion processing.   355 

One critical assumption in this inversion was that the conductivity is isotropic; 356 

conductivity within a cell does not vary with direction. However, it is well known within 357 

sedimentary rocks that fine grain bedding planes can induce the rocks to exhibit transverse 358 



electrical anisotropy [13 and 14]. In addition, parallel interbedding of rocks with different 359 

conductivities can lead to anisotropic behavior. Thus, the conductivity can be expected to 360 

depend strongly on directions, parallel and perpendicular to the bedding planes. In the 361 

context of marine CSEM, [15] showed that the effects of electrical anisotropy can produce 362 

significant anomalies, even as large as target reservoir responses, and a consensus is now 363 

emerging that electrical anisotropy plays a bigger factor in influencing marine CSEM 364 

measurement than previously believed. 365 

Two tests were carried out to verify the importance of anisotropy. First, to test the degree 366 

to which electrical anisotropy is affecting the broadside inline data, and to what lesser 367 

extent it influences the overflight and broadside perpendicular and vertical data, we 368 

repeated the initial stage of the inversion process. This involved an anisotropic model with 369 

the vertical conductivity fixed at the conductivity used in the initial isotropic inversion and 370 

the horizontal conductivity set to three times the vertical conductivity below the water 371 

bottom. A sampling of the results is shown in Figure 5, confirming that the data are very 372 

likely significantly more consistent with an anisotropic conductivity model than with an 373 

isotropic one. Furthermore, we rerun two inversions with a subset of the data, comprising 374 

36 effective transmitters. Using the same isotropic starting model, the inversions differed 375 

by using an isotropic and anisotropic model parameterization. After 62 iterations, the 376 

anisotropic model achieved a final data fit, which was by 27 % lower, compared to the 377 

isotropic result. A complete anisotropic inversion of these data has yet to be carried out.  378 

 379 

 380 



CONCLUSIONS 381 

We have made significant progress in reducing the computational demands of large-scale 382 

3D EM imaging problems. Exploiting multiple levels of parallelism over the data and 383 

model spaces and utilizing different meshing for field simulation and imaging provides a 384 

capability to solve large 3D imaging problems that cannot be addressed otherwise in a 385 

timely manner. 386 

Results of the Blue Gene/L experiment for this offshore data showed that the broadside 387 

inline component data displays a systematic bias that is most likely attributable to 388 

conductivity anisotropy between the vertical and horizontal directions. The other field 389 

components were satisfactorily fit by an isotropic model, showing that these field 390 

components are significantly less sensitive to this kind of anisotropy. The speed at which 391 

the Blue Gene/L supercomputer delivered this result is essential to the time frame in which 392 

the exploration process is conducted. This work provides motivation to extend the 3D 393 

conductivity imaging methodology to the anisotropic situation.        394 
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Figure captions 464 

Figure 1. Illustration of the conductivity averaging scheme of equation (4) in two 465 

dimensions.  466 

Figure 2. Layout of the sail lines (red and blue) and 23 detector locations (crosses) on the 467 

sea bottom for the offshore CSEM survey. Contained survey configurations are illustrated 468 

in the upper figure. Bathymetry is given in meters below sea level. The example data 469 

shown in this paper corresponds to the transmitter-detector arrays marked in blue. 470 

Figure 3. Six selected plots of overflight and broadside electric field data amplitudes 471 

(black curves) versus the transmitter offset projected onto the profile lines shown in Figure 472 

2. Shown are data fits produced by the starting model (red) and for iteration 72 (blue). 473 

Figure 4. Average resistivity computed over three depth ranges for solution 72: a) Water 474 

bottom to 500 m below mud line (BML), b) interval 500 to 1500 m BML, c) interval 1500 475 

to 2500 m BML. Resistivity is rendered on a base 10 log scale. 476 

Figure 5. Six selected plots of overflight and broadside electric field data amplitudes 477 

(black curves) versus the transmitter offset projected onto the profile. Shown are data fits 478 

produced by a starting model with isotropic (red) and anisotropic (blue) electrical 479 

conductivity. 480 
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