28 research outputs found

    The nutritional impact of replacing dietary meat with meat alternatives in the UK: a modelling analysis using nationally representative data

    Get PDF
    Dietary patterns high in meat compromise both planetary and human health. Meat-alternatives may help facilitate meat reduction, however the nutritional implications of displacing meat with meat-alternatives does not appear to have been evaluated. Here, data from the 9th cycle of the National Diet and Nutrition Survey was used as the basis of models to assess the effect of meat substitution on nutritional intake. We implemented three models; model 1 progressively replaced 25%, 50%, 75%, or 100% of the current meat intake with a weighted mean of meat-alternatives available in the UK market. Model 2 compared different ingredient categories of meat-alternative; vegetable, mycoprotein, a combination of bean and pea, tofu, nut and soy. Model 3 compared fortified versus unfortified meat-alternatives. The models elicited significant shifts in nutrients. Overall, there were increases in carbohydrate, fibre, sugars and sodium, whereas reductions were found for protein, total and saturated fat, iron and B12. The greatest effects were seen for; vegetable-based (+24.63g/day carbohydrates), mycoprotein-based (−6.12g/day total fat), nut-based (−19.79g/day protein, +10.23g/day fibre; −4.80g/day saturated fat, +7.44g/day sugars), soy-based (+495.98mg/day sodium), and tofu-based (+7.63mg/day iron, −2.02μg/day B12). Our results suggest meat-alternatives can be a healthful replacement for meat if chosen correctly. Consumers should seek out meat-alternatives which are low in sodium and sugar, high in fibre, protein and with high micronutrient density, to avoid compromising nutritional intake if reducing their meat intake. Manufacturers and policy makers should consider fortification of meat-alternatives with nutrients such as iron and B12 and focus on reducing sodium and sugar content

    MYOD-1 in normal colonic mucosa : role as a putative biomarker?

    Get PDF
    Background DNA methylation of promoter-associated CpG islands of certain genes may play a role in the development of colorectal cancer. The MYOD-1 gene which is a muscle differentiation gene has been showed to be significantly methylated in colorectal cancer which, is an age related event. However the role of this gene in the colonic mucosa is not understood and whether methylation occurs in subjects without colon cancer. In this study, we have determined the frequency of methylation of the MYOD-1 gene in normal colonic mucosa and investigated to see if this is associated with established colorectal cancer risk factors primarily ageing. Results We analysed colonic mucosal biopsies in 218 normal individuals and demonstrated that in most individuals promoter hypermethylation was not quantified for MYOD-1. However, promoter hypermethylation increased significantly with age (p < 0.001 using regression analysis) and this was gender independent. We also showed that gene promoter methylation increased positively with an increase in waist to hip (WHR) ratio – the latter is also a known risk factor for colon cancer development. Conclusions Our study suggests that promoter gene hypermethylation of the MYOD-1 gene increases significantly with age in normal individuals and thus may offer potential as a putative biomarker for colorectal cancer

    Atmospheric Acetaldehyde: Importance of Air-Sea Exchange and a Missing Source in the Remote Troposphere.

    Get PDF
    We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models

    Corrigendum to "Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools" published in Atmos. Chem. Phys., 10, 169–199, 2010

    Get PDF
    Author(s): Hewitt, CN; Lee, JD; MacKenzie, AR; Barkley, MP; Carslaw, N; Carver, GD; Chappell, NA; Coe, H; Collier, C; Commane, R; Davies, F; Davison, B; DiCarlo, P; Di Marco, CF; Dorsey, JR; Edwards, PM; Evans, MJ; Fowler, D; Furneaux, KL; Gallagher, M; Guenther, A; Heard, DE; Helfter, C; Hopkins, J; Ingham, T; Irwin, M; Jones, C; Karunaharan, A; Langford, B; Lewis, AC; Lim, SF; MacDonald, SM; Mahajan, AS; Malpass, S; McFiggans, G; Mills, G; Misztal, P; Moller, S; Monks, PS; Nemitz, E; Nicolas-Perea, V; Oetjen, H; Oram, DE; Palmer, PI; Phillips, GJ; Pike, R; Plane, JMC; Pugh, T; Pyle, JA; Reeves, CE; Robinson, NH; Stewart, D; Stone, D; Whalley, LK; Yang,

    Cross-feeding interactions between human gut commensals belonging to the Bacteroides and Bifidobacterium genera when grown on dietary glycans

    Get PDF
    Elements of the human gut microbiota metabolise many host- and diet-derived, non-digestible carbohydrates (NDCs). Intestinal fermentation of NDCs salvages energy and resources for the host and generates beneficial metabolites, such as short chain fatty acids, which contribute to host health. The development of functional NDCs that support the growth and/or metabolic activity of specific beneficial gut bacteria, is desirable, but dependent on an in-depth understanding of the pathways of carbohydrate fermentation. The purpose of this review is to provide an appraisal of what is known about the roles of, and interactions between, Bacteroides and Bifidobacterium as key members involved in NDC utilisation. Bacteroides is considered an important primary degrader of complex NDCs, thereby generating oligosaccharides, which in turn can be fermented by secondary degraders. In this review, we will therefore focus on Bacteroides as an NDC-degrading specialist and Bifidobacterium as an important and purported probiotic representative of secondary degraders. We will describe cross-feeding interactions between members of these two genera. We note that there are limited studies exploring the interactions between Bacteroides and Bifidobacterium, specifically concerning β-glucan and arabinoxylan metabolism. This review therefore summarises the roles of these organisms in the breakdown of dietary fibre and the molecular mechanisms and interactions involved. Finally, it also highlights the need for further research into the phenomenon of cross-feeding between these organisms for an improved understanding of these cross-feeding mechanisms to guide the rational development of prebiotics to support host health or to prevent or combat disease associated with microbial dysbiosis
    corecore