482 research outputs found
The role of the gut microbiota in colorectal cancer causation
Here, we reviewed emerging evidence on the role of the microbial community in colorectal carcinogenesis. A healthy gut microbiota promotes intestinal homeostasis and can exert anti-cancer effects; however, this microbiota also produces a variety of metabolites that are genotoxic and which can negatively influence epithelial cell behaviour. Disturbances in the normal microbial balance, known as dysbiosis, are frequently observed in colorectal cancer (CRC) patients. Microbial species linked to CRC include certain strains of ,  and  amongst others. Whether these microbes are merely passive dwellers exploiting the tumour environment, or rather, active protagonists in the carcinogenic process is the subject of much research. The incidence of chemically-induced tumours in mice models varies, depending upon the presence or absence of these microorganisms, thus strongly suggesting influences on disease causation. Putative mechanistic explanations differentially link these strains to DNA damage, inflammation, aberrant cell behaviour and immune suppression. In the future, modulating the composition and metabolic activity of this microbial community may have a role in prevention and therapy
Recommended from our members
Consumption of a flavonoid-rich acai meal is associated with acute improvements in vascular function and a reduction in total oxidative status in healthy overweight men
Background: Acai (Euterpe oleracea) is a polyphenol-rich fruit marketed as beneficial for health. Experimental data showing improvements in health markers arising from acai consumption in humans is limited.
Objective: The objective of the present study was to investigate the effect of acai consumption on acute changes in vascular function and on other disease risk markers, including postprandial plasma insulin, glucose, and oxidative stress.
Design: Twenty-three healthy male volunteers, aged 30–65 y and with a body mass index (in kg/m2) of 25–30, completed a randomized,controlled, high-fat challenge, double-blind, crossover, acute dietary intervention trial. The volunteers consumed either an acai-based smoothie (AS) or a macronutrient-matched control smoothie (PS) together with a high-fat breakfast meal challenge. The primary endpoint was the assessment of endothelial function in the brachial artery by flow-mediated dilatation (FMD).
Results: The acute consumption of an AS containing 694 mg total phenolics improved vascular function, with postprandial increases in FMD from baseline of 1.4% at 2 h compared with 0.4% after consumption of the PS (P = 0.001) and increases at 6 h of 0.8% for the AS compared with 20.3% for the PS (P , 0.001). There was also a significantly lower incremental area under the curve (iAUC)for total peroxide oxidative status after acai consumption relative to the control. No significant changes were observed in blood pressure,heart rate, or postprandial glucose response. However, the first postprandial insulin peak (after breakfast) and the iAUC for insulin were elevated for the AS relative to the PS.
Conclusions: In this acute study in overweight men, acai consumption was associated with improvements in vascular function, which may lower the risk of a cardiovascular event. Future intervention studies, perhaps with a chronic design, in wider populations and with other biomarkers of disease risk are needed to fully elucidate the benefits of acai to health
Recommended from our members
Metabolic targets of watercress and PEITC in MCF-7 and MCF-10A cells explain differential sensitisation responses to ionising radiation
Watercress is a rich source of phytochemicals with anticancer potential, including phenethyl isothiocyanate (PEITC). We examined the potential for watercress extracts and PEITC to increase the DNA damage caused by ionising radiation (IR) in breast cancer cells and to be protective against radiation-induced collateral damage in healthy breast cells. The metabolic events that mediate such responses were explored using metabolic profiling. H nuclear magnetic resonance spectroscopy-based metabolic profiling was coupled with DNA damage-related assays (cell cycle, Comet assay, viability assays) to profile the comparative effects of watercress and PEITC in MCF-7 breast cancer cells and MCF-10A non-tumorigenic breast cells with and without exposure to IR. Both the watercress extract and PEITC-modulated biosynthetic pathways of lipid and protein synthesis and resulted in changes in cellular bioenergetics. Disruptions to the redox balance occurred with both treatments in the two cell lines, characterised by shifts in the abundance of glutathione. PEITC enhanced the sensitivity of the breast cancer cells to IR increasing the effectiveness of the cancer-killing process. In contrast, watercress-protected non-tumorigenic breast cells from radiation-induced damage. These effects were driven by changes in the cellular content of the antioxidant glutathione following exposure to PEITC and other phytochemicals in watercress. These findings support the potential prophylactic impact of watercress during radiotherapy. Extracted compounds from watercress and PEITC differentially modulate cellular metabolism collectively enhancing the therapeutic outcomes of radiotherapy
Nutritional factors and gender influence age-related DNA methylation in the human rectal mucosa
Aberrant methylation of CpG islands (CGI) occurs in many genes expressed in colonic epithelial cells, and may contribute to the dysregulation of signalling pathways associated with carcinogenesis. This cross-sectional study assessed the relative importance of age, nutritional exposures and other environmental factors in the development of CGI methylation. Rectal biopsies were obtained from 185 individuals (84 male, 101 female) shown to be free of colorectal disease, and for whom measurements of age, body size, nutritional status and blood cell counts were available. We used quantitative DNA methylation analysis combined with multivariate modelling to investigate the relationships between nutritional, anthropometric and metabolic factors and the CGI methylation of 11 genes, together with LINE-1 as an index of global DNA methylation. Age was a consistent predictor of CGI methylation for 9/11 genes but significant positive associations with folate status and negative associations with vitamin D and selenium status were also identified for several genes. There was evidence for positive associations with blood monocyte levels and anthropometric factors for some genes. In general, CGI methylation was higher in males than in females and differential effects of age and other factors on methylation in males and females were identified. In conclusion, levels of age-related CGI methylation in the healthy human rectal mucosa are influenced by gender, the availability of folate, vitamin D and selenium, and perhaps by factors related to systemic inflammatio
Ecosystem fluxes of hydrogen: a comparison of flux-gradient methods
Our understanding of biosphere–atmosphere exchange has been considerably enhanced by eddy covariance measurements. However, there remain many trace gases, such as molecular hydrogen (H[subscript 2]), that lack suitable analytical methods to measure their fluxes by eddy covariance. In such cases, flux-gradient methods can be used to calculate ecosystem-scale fluxes from vertical concentration gradients. The budget of atmospheric H[subscript 2] is poorly constrained by the limited available observations, and thus the ability to quantify and characterize the sources and sinks of H[subscript 2] by flux-gradient methods in various ecosystems is important. We developed an approach to make nonintrusive, automated measurements of ecosystem-scale H2 fluxes both above and below the forest canopy at the Harvard Forest in Petersham, Massachusetts, for over a year. We used three flux-gradient methods to calculate the fluxes: two similarity methods that do not rely on a micrometeorological determination of the eddy diffusivity, K, based on (1) trace gases or (2) sensible heat, and one flux-gradient method that (3) parameterizes K. We quantitatively assessed the flux-gradient methods using CO[subscript 2] and H[subscript 2]O by comparison to their simultaneous independent flux measurements via eddy covariance and soil chambers. All three flux-gradient methods performed well in certain locations, seasons, and times of day, and the best methods were trace gas similarity for above the canopy and K parameterization below it. Sensible heat similarity required several independent measurements, and the results were more variable, in part because those data were only available in the winter, when heat fluxes and temperature gradients were small and difficult to measure. Biases were often observed between flux-gradient methods and the independent flux measurements, and there was at least a 26% difference in nocturnal eddy-derived net ecosystem exchange (NEE) and chamber measurements. H[subscript 2] fluxes calculated in a summer period agreed within their uncertainty and pointed to soil uptake as the main driver of H[subscript 2] exchange at Harvard Forest, with H[subscript 2] deposition velocities ranging from 0.04 to 0.10 cm s[superscript −1].National Science Foundation (U.S.) (NSF Graduate Research Fellowship)United States. National Aeronautics and Space Administration (Advanced Global Atmospheric Gases Experiment (AGAGE))Massachusetts Institute of Technology. Joint Program on the Science & Policy of Global ChangeMartin Family Society of Fellows for SustainabilityMassachusetts Institute of Technology (Ally of Nature Research Fund)Massachusetts Institute of Technology (William Otis Crosby Lectureship)Massachusetts Institute of Technology (Warren Klein Fund
Design of and initial results from a highly instrumented reactor for atmospheric chemistry (HIRAC)
International audienceThe design of a Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC) is described and initial results obtained from HIRAC are presented. The ability of HIRAC to perform in-situ laser-induced fluorescence detection of OH and HO2 radicals with the Fluorescence Assay by Gas Expansion (FAGE) technique establishes it as internationally unique for a chamber of its size and pressure/temperature variable capabilities. In addition to the FAGE technique, HIRAC features a suite of analytical instrumentation, including: a multipass FTIR system; a conventional gas chromatography (GC) instrument and a GC instrument for formaldehyde detection; and NO/NO2, CO, O3, and H2O vapour analysers. Ray tracing simulations and measurements of the blacklamp flux have been utilized to develop a detailed model of the radiation field within HIRAC. Comparisons between the analysers and the FTIR coupled to HIRAC have been performed, and HIRAC has also been used to investigate pressure dependent kinetics of the chlorine atom reaction with ethene and the reaction of O3 and t-2-butene. The results obtained are in good agreement with literature recommendations and Master Chemical Mechanism predictions. HIRAC thereby offers a highly instrumented platform with the potential for: (1) high precision kinetics investigations over a range of atmospheric conditions; (2) detailed mechanism development, significantly enhanced according to its capability for measuring radicals; and (3) field instrument intercomparison, calibration, development, and investigations of instrument response under a range of atmospheric conditions
Iodine monoxide at a clean marine coastal site: observations of high frequency variations and inhomogeneous distributions
The first in situ point observations of iodine monoxide (IO) at a clean  marine site were made using a laser-induced fluorescence instrument  deployed at Mace Head, Ireland in August 2007. IO mixing ratios of up  to 49.8 pptv (equivalent to pmol mol<sup>−1</sup>; 1 s average)  were observed at day-time low tide, well in  excess of previous observed spatially-averaged maxima. A strong  anti-correlation of IO mixing ratios with tide height was evident and the high time  resolution of the observations showed IO peaked in the hour after low  tide. The temporal delay in peak IO compared to low tide has not been  observed previously but coincides with the time of peak aerosol number  previously observed at Mace Head. <br><br>  A long path-differential optical absorption spectroscopy instrument  (with a 2 × 6.8 km folded path across Roundstone Bay) was  also based at the site for 3 days during the point measurement  observation period. Both instruments show similar temporal trends but  the point measurements of IO are a factor of ~6–10 times  greater than the spatially averaged IO mixing ratios, providing direct  empirical evidence of the presence of inhomogeneities in the IO mixing  ratio near the intertidal region
Atmospheric Acetaldehyde: Importance of Air-Sea Exchange and a Missing Source in the Remote Troposphere.
We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models
Clonal expansion of early to mid-life mitochondrial DNA point mutations drives mitochondrial dysfunction during human ageing
Age-related decline in the integrity of mitochondria is an important contributor to the human ageing process. In a number of ageing stem cell populations, this decline in mitochondrial function is due to clonal expansion of individual mitochondrial DNA (mtDNA) point mutations within single cells. However the dynamics of this process and when these mtDNA mutations occur initially are poorly understood. Using human colorectal epithelium as an exemplar tissue with a well-defined stem cell population, we analysed samples from 207 healthy participants aged 17-78 years using a combination of techniques (Random Mutation Capture, Next Generation Sequencing and mitochondrial enzyme histochemistry), and show that: 1) non-pathogenic mtDNA mutations are present from early embryogenesis or may be transmitted through the germline, whereas pathogenic mtDNA mutations are detected in the somatic cells, providing evidence for purifying selection in humans, 2) pathogenic mtDNA mutations are present from early adulthood (<20 years of age), at both low levels and as clonal expansions, 3) low level mtDNA mutation frequency does not change significantly with age, suggesting that mtDNA mutation rate does not increase significantly with age, and 4) clonally expanded mtDNA mutations increase dramatically with age. These data confirm that clonal expansion of mtDNA mutations, some of which are generated very early in life, is the major driving force behind the mitochondrial dysfunction associated with ageing of the human colorectal epithelium
- …
