482 research outputs found

    Micro-RNA-1 is decreased by hypoxia and contributes to the development of pulmonary vascular remodeling via regulation of sphingosine kinase 1

    Get PDF
    Sphingosine kinase 1 (SphK1) upregulation is associated with pathologic pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), but the mechanisms controlling its expression are undefined. In this study, we sought to characterize the regulation of SphK1 expression by micro-RNAs (miRs). In silico analysis of the SphK1 3'-untranslated region identified several putative miR binding sites, with miR-1-3p (miR-1) being the most highly predicted target. Therefore we further investigated the role of miR-1 in modulating SphK1 expression and characterized its effects on the phenotype of pulmonary artery smooth muscle cells (PASMCs) and the development of experimental pulmonary hypertension in vivo. Our results demonstrate that miR-1 is downregulated by hypoxia in PASMCs and can directly inhibit SphK1 expression. Overexpression of miR-1 in human PASMCs inhibits basal and hypoxia-induced proliferation and migration. Human PASMCs isolated from PAH patients exhibit reduced miR-1 expression. We also demonstrate that miR-1 is downregulated in mouse lung tissues during experimental hypoxia-mediated pulmonary hypertension (HPH), consistent with upregulation of SphK1. Furthermore, administration of miR-1 mimics in vivo prevented the development of HPH in mice and attenuated induction of SphK1 in PASMCs. These data reveal the importance of miR-1 in regulating SphK1 expression during hypoxia in PASMCs. A pivotal role is played by miR-1 in pulmonary vascular remodeling, including PASMC proliferation and migration, and its overexpression protects from the development of HPH in vivo. These studies improve our understanding of the molecular mechanisms underlying the pathogenesis of pulmonary hypertension

    Dietary cholesterol, female gender and n-3 fatty acid deficiency are more important factors in the development of non-alcoholic fatty liver disease than the saturation index of the fat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The central feature of NAFLD is a disturbed fatty-acid metabolism with hepatic lipid accumulation. However, the factors that determine the severity of NAFLD, including the role of nutrition, gender, and plasma lipid levels, remain to be determined.</p> <p>Methods</p> <p>High-fat diets (42 en% fat), containing 0.2% cholesterol, were fed to male and female wild-type and hyperlipidemic <it>APOE2ki </it>C57BL/6J mice for three weeks. The fats were, in order of decreasing saturation, fractionated palm fat (fPF; ~95%), cocoa butter (CB; ~60%), olive oil (OO; ~15%), sunflower oil (SO; ~12%), and high-oleic-acid sunflower oil (hoSO; ~7%). Plasma and liver triglycerides (concentration and composition), liver inflammation (<it>Ccl2</it>, <it>Cd68</it>, <it>Tnf-α </it>mRNA), and infiltration of macrophages (Cd68, Cd11b immunohistochemistry) and neutrophils (Mpo) were quantified.</p> <p>Results</p> <p>Addition of cholesterol to a low-fat diet decreased plasma HDL and increased (V)LDL levels in APOE2ki mice. Plasma cholesterol levels in female, but not male APOE2ki mice correlated significantly with inflammation. Kupffer cells of inflamed livers were swollen. Wild-type mice refused the highly saturated fPF diet. The high-fat CB, OO, and SO diets induced hyperglycemia and a 2-fold increase in hepatic fat content in male, but not female wild-type mice (in females, hepatic fat content was similar to that in males fed a high-fat diet). All high-fat diets induced macrovesicular setatosis. APOE2ki mice were protected against high-fat diet-induced steatosis and hyperglycemia, except when fed a hoSO diet. This diet caused a 5-fold increase in liver triglyceride and mead-acid content, and an increased expression of lipogenic genes, suggesting a deficiency in poly-unsaturated fatty acids. Irrespective of the composition of the high-fat diet, oleic acid was the main triglyceride component of liver fat in wild-type and APOE2ki mouse livers. Liver inflammation was dependent on genotype (APOE2ki > wild type), gender (female > male), and cholesterol content (high > low) of the diet, but not on dietary fat composition.</p> <p>Conclusions</p> <p>Dietary cholesterol plays a determining, independent role in inflammation, especially in female mice. The fatty-acid saturation of the diet hardly affected hepatic steatosis or inflammation.</p

    A novel method for pulmonary research: Assessment of bioenergetic function at the air–liquid interface

    Get PDF
    AbstractAir–liquid interface cell culture is an organotypic model for study of differentiated functional airway epithelium in vitro. Dysregulation of cellular energy metabolism and mitochondrial function have been suggested to contribute to airway diseases. However, there is currently no established method to determine oxygen consumption and glycolysis in airway epithelium in air–liquid interface. In order to study metabolism in differentiated airway epithelial cells, we engineered an insert for the Seahorse XF24 Analyzer that enabled the measure of respiration by oxygen consumption rate (OCR) and glycolysis by extracellular acidification rate (ECAR). Oxidative metabolism and glycolysis in airway epithelial cells cultured on the inserts were successfully measured. The inserts did not affect the measures of OCR or ECAR. Cells under media with apical and basolateral feeding had less oxidative metabolism as compared to cells on the inserts at air-interface with basolateral feeding. The design of inserts that can be used in the measure of bioenergetics in small numbers of cells in an organotypic state may be useful for evaluation of new drugs and metabolic mechanisms that underlie airway diseases

    Biomarker-based asthma phenotypes of corticosteroid response

    Get PDF
    BackgroundAsthma is a heterogeneous disease with different phenotypes. Inhaled corticosteroid (ICS) therapy is a mainstay of treatment for asthma, but the clinical response to ICSs is variable.ObjectiveWe hypothesized that a panel of inflammatory biomarkers (ie, fraction of exhaled nitric oxide [Feno], sputum eosinophil count, and urinary bromotyrosine [BrTyr] level) might predict steroid responsiveness.MethodsThe original study from which this analysis originates comprised 2 phases: a steroid-naive phase 1 and a 28-day trial of ICSs (phase 2) during which Feno values, sputum eosinophil counts, and urinary BrTyr levels were measured. The response to ICSs was based on clinical improvements, including a 12% or greater increase in FEV1, a 0.5-point or greater decrease in Asthma Control Questionnaire score, and 2 doubling dose or greater increase in provocative concentration of adenosine 5′-monophosphate causing a 20% decrease in FEV1 (PC20AMP). Healthy control subjects were also evaluated in this study for comparison of biomarkers with those seen in asthmatic patients.ResultsAsthmatic patients had higher than normal Feno values, sputum eosinophil counts, and urinary BrTyr levels during the steroid-naive phase and after ICS therapy. After 28-day trial of ICSs, Feno values decreased in 82% of asthmatic patients, sputum eosinophil counts decreased in 60%, and urinary BrTyr levels decreased in 58%. Each of the biomarkers at the steroid-naive phase had utility for predicting steroid responsiveness, but the combination of high Feno values and high urinary BrTyr levels had the best power (13.3-fold, P < .01) to predict a favorable response to ICS therapy. However, the magnitude of the decrease in biomarker levels was unrelated to the magnitude of clinical response to ICS therapy.ConclusionA noninvasive panel of biomarkers in steroid-naive asthmatic patients predicts clinical responsiveness to ICS therapy

    HSD3B1 genotype identifies glucocorticoid responsiveness in severe asthma

    Get PDF
    Asthma resistance to glucocorticoid treatment is a major health problem with unclear etiology. Glucocorticoids inhibit adrenal androgen production. However, androgens have potential benefits in asthma. HSD3B1 encodes for 3β-hydroxysteroid dehydrogenase-1 (3β-HSD1), which catalyzes peripheral conversion from adrenal dehydroepiandrosterone (DHEA) to potent androgens and has a germline missense-encoding polymorphism. The adrenal restrictive HSD3B1(1245A) allele limits conversion, whereas the adrenal permissive HSD3B1(1245C) allele increases DHEA metabolism to potent androgens. In the Severe Asthma Research Program (SARP) III cohort, we determined the association between DHEA-sulfate and percentage predicted forced expiratory volume in 1 s (FEV1PP). HSD3B1(1245) genotypes were assessed, and association between adrenal restrictive and adrenal permissive alleles and FEV1PP in patients with (GC) and without (noGC) daily oral glucocorticoid treatment was determined (n = 318). Validation was performed in a second cohort (SARP I&II; n = 184). DHEA-sulfate is associated with FEV1PP and is suppressed with GC treatment. GC patients homozygous for the adrenal restrictive genotype have lower FEV1PP compared with noGC patients (54.3% vs. 75.1%; P < 0.001). In patients with the homozygous adrenal permissive genotype, there was no FEV1PP difference in GC vs. noGC patients (73.4% vs. 78.9%; P = 0.39). Results were independently confirmed: FEV1PP for homozygous adrenal restrictive genotype in GC vs. noGC is 49.8 vs. 63.4 (P < 0.001), and for homozygous adrenal permissive genotype, it is 66.7 vs. 67.7 (P = 0.92). The adrenal restrictive HSD3B1(1245) genotype is associated with GC resistance. This effect appears to be driven by GC suppression of 3β-HSD1 substrate. Our results suggest opportunities for prediction of GC resistance and pharmacologic intervention

    Alpha2-Containing Glycine Receptors Promote Neonatal Spontaneous Activity of Striatal Medium Spiny Neurons and Support Maturation of Glutamatergic Inputs

    Get PDF
    Glycine receptors (GlyRs) containing the α2 subunit are highly expressed in the developing brain, where they regulate neuronal migration and maturation, promote spontaneous network activity and subsequent development of synaptic connections. Mutations in GLRA2 are associated with autism spectrum disorder, but the underlying pathophysiology is not described yet. Here, using Glra2-knockout mice, we found a GlyR-dependent effect on neonatal spontaneous activity of dorsal striatum medium spiny neurons (MSNs) and maturation of the incoming glutamatergic innervation. Our data demonstrate that functional GlyRs are highly expressed in MSNs of one-week-old mice, but they do not generate endogenous chloride-mediated tonic or phasic current. Despite of that, knocking out the Glra2 severely affects the shape of action potentials and impairs spontaneous activity and the frequency of miniature AMPA receptor-mediated currents in MSNs. This reduction in spontaneous activity and glutamatergic signaling can attribute to the observed changes in neonatal behavioral phenotypes as seen in ultrasonic vocalizations and righting reflex. In adult Glra2-knockout animals, the glutamatergic synapses in MSNs remain functionally underdeveloped. The number of glutamatergic synapses and release probability at presynaptic site remain unaffected, but the amount of postsynaptic AMPA receptors is decreased. This deficit is a consequence of impaired development of the neuronal circuitry since acute inhibition of GlyRs by strychnine in adult MSNs does not affect the properties of glutamatergic synapses. Altogether, these results demonstrate that GlyR-mediated signaling supports neonatal spontaneous MSN activity and, in consequence, promotes the functional maturation of glutamatergic synapses on MSNs. The described mechanism might shed light on the pathophysiological mechanisms in GLRA2-linked autism spectrum disorder cases

    Tonically Active α2 Subunit-Containing Glycine Receptors Regulate the Excitability of Striatal Medium Spiny Neurons

    Get PDF
    Medium spiny neurons (MSNs) of the dorsal striatum represent the first relay of cortico-striato-thalamic loop, responsible for the initiation of voluntary movements and motor learning. GABAergic transmission exerts the main inhibitory control of MSNs. However, MSNs also express chloride-permeable glycine receptors (GlyRs) although their subunit composition and functional significance in the striatum is unknown. Here, we studied the function of GlyRs in MSNs of young adult mice. We show that MSNs express functional GlyRs, with α2 being the main agonist binding subunit. These receptors are extrasynaptic and depolarizing at resting state. The pharmacological inhibition of GlyRs, as well as inactivation of the GlyR α2 subunit gene hyperpolarize the membrane potential of MSNs and increase their action potential firing offset. Mice lacking GlyR α2 showed impaired motor memory consolidation without any changes in the initial motor performance. Taken together, these results demonstrate that tonically active GlyRs regulate the firing properties of MSNs and may thus affect the function of basal ganglia
    corecore