18 research outputs found

    Multiple Scattering of Fractionally-Charged Quasiparticles

    Full text link
    We employ shot noise measurements to characterize the effective charge of quasiparticles, at filling factor nu=1/3 of the fractional quantum Hall regime, as they scatter from an array of identical weak backscatterers. Upon scattering, quasiparticles are known to bunch, e.g., only three e/3 charges, or 'electrons' are found to traverse a rather opaque potential barrier. We find here that the effective charge scattered by an array of scatterers is determined by the scattering strength of an individual scatterer and not by the combined scattering strength of the array, which can be very small. Moreover, we also rule out intra-edge equilibration of e/3 quasiparticles over length scale of hundreds microns.Comment: 4 pages, 4 figure

    Shot-noise spectroscopy of energy-resolved ballistic currents

    Get PDF
    We investigate the shot noise of nonequilibrium carriers injected into a ballistic conductor and interacting via long-range Coulomb forces. Coulomb interactions are shown to act as an energy analyzer of the profile of injected electrons by means of the fluctuations of the potential barrier at the emitter contact. We show that the details in the energy profile can be extracted from shot-noise measurements in the Coulomb interaction regime, but cannot be obtained from time-averaged quantities or shot-noise measurements in the absence of interactions.Comment: 7 pages, 4 figure

    Evidence for non-linear quasiparticle tunneling between fractional quantum Hall edges

    Get PDF
    Remarkable nonlinearities in the differential tunneling conductance between fractional quantum Hall edge states at a constriction are observed in the weak-backscattering regime. In the ν\nu = 1/3 state a peak develops as temperature is increased and its width is determined by the fractional charge. In the range 2/3ν1/32/3 \le \nu \le 1/3 this width displays a symmetric behavior around ν\nu = 1/2. We discuss the consistency of these results with available theoretical predictions for inter-edge quasiparticle tunneling in the weak-backscattering regime

    The Evolution of Quasiparticle Charge in the Fractional Quantum Hall Regime

    Full text link
    The charge of quasiparticles in a fractional quantum Hall (FQH) liquid, tunneling through a partly reflecting constriction with transmission t, was determined via shot noise measurements. In the nu=1/3 FQH state, a charge smoothly evolving from e*=e/3 for t=1 to e*=e for t<<1 was determined, agreeing with chiral Luttinger liquid theory. In the nu=2/5 FQH state the quasiparticle charge evolves smoothly from e*=e/5 at t=1 to a maximum charge less than e*=e/3 at t<<1. Thus it appears that quasiparticles with an approximate charge e/5 pass a barrier they see as almost opaque.Comment: 4 pages, Correct figure 3 and caption include

    Fractional Quantum Hall States of Clustered Composite Fermions

    Full text link
    The energy spectra and wavefunctions of up to 14 interacting quasielectrons (QE's) in the Laughlin nu=1/3 fractional quantum Hall (FQH) state are investigated using exact numerical diagonalization. It is shown that at sufficiently high density the QE's form pairs or larger clusters. This behavior, opposite to Laughlin correlations, invalidates the (sometimes invoked) reapplication of the composite fermion picture to the individual QE's. The series of finite-size incompressible ground states are identified at the QE filling factors nu_QE=1/2, 1/3, 2/3, corresponding to the electron fillings nu=3/8, 4/11, 5/13. The equivalent quasihole (QH) states occur at nu_QH=1/4, 1/5, 2/7, corresponding to nu=3/10, 4/13, 5/17. All these six novel FQH states were recently discovered experimentally. Detailed analysis indicates that QE or QH correlations in these states are different from those of well-known FQH electron states (e.g., Laughlin or Moore-Read states), leaving the origin of their incompressibility uncertain. Halperin's idea of Laughlin states of QP pairs is also explored, but is does not seem adequate.Comment: 14 pages, 9 figures; revision: 1 new figure, some new references, some new data, title chang

    dSarm/Sarm1 is required for activation of an injury-induced axon death pathway

    No full text
    Axonal and synaptic degeneration is a hallmark of peripheral neuropathy, brain injury, and neurodegenerative disease. Axonal degeneration has been proposed to be mediated by an active autodestruction program, akin to apoptotic cell death; however, loss-of-function mutations capable of potently blocking axon self-destruction have not been described. Here, we show that loss of the Drosophila Toll receptor adaptor dSarm (sterile alpha/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously suppresses Wallerian degeneration for weeks after axotomy. Severed mouse Sarm1 null axons exhibit remarkable long-term survival both in vivo and in vitro, indicating that Sarm1 prodegenerative signaling is conserved in mammals. Our results provide direct evidence that axons actively promote their own destruction after injury and identify dSarm/Sarm1 as a member of an ancient axon death signaling pathway
    corecore