710 research outputs found

    Dual Supermassive Black Hole Candidates in the AGN and Galaxy Evolution Survey

    Full text link
    Dual supermassive black holes (SMBHs) with kiloparsec scale separations in merger-remnant galaxies are informative tracers of galaxy evolution, but the avenue for identifying them in large numbers for such studies is not yet clear. One promising approach is to target spectroscopic signatures of systems where both SMBHs are fueled as dual active galactic nuclei (AGNs), or where one SMBH is fueled as an offset AGN. Dual AGNs may produce double-peaked narrow AGN emission lines, while offset AGNs may produce single-peaked narrow AGN emission lines with line-of-sight velocity offsets relative to the host galaxy. We search for such dual and offset systems among 173 Type 2 AGNs at z<0.37 in the AGN and Galaxy Evolution Survey (AGES), and we find two double-peaked AGNs and five offset AGN candidates. When we compare these results to a similar search of the DEEP2 Galaxy Redshift Survey and match the two samples in color, absolute magnitude, and minimum velocity offset, we find that the fraction of AGNs that are dual SMBH candidates increases from z=0.25 to z=0.7 by a factor of ~6 (from 2/70 to 16/91, or 2.9% to 18%). This may be associated with the rise in the galaxy merger fraction over the same cosmic time. As further evidence for a link with galaxy mergers, the AGES offset and dual AGN candidates are tentatively ~3 times more likely than the overall AGN population to reside in a host galaxy that has a companion galaxy (from 16/173 to 2/7, or 9% to 29%). Follow-up observations of the seven offset and dual AGN candidates in AGES will definitively distinguish velocity offsets produced by dual SMBHs from those produced by narrow-line region kinematics, and will help sharpen our observational approach to detecting dual SMBHs.Comment: 10 pages, 8 figures, accepted for publication in Ap

    Accounting for decarbonisation and reducing capital at risk in the S&P500

    Get PDF
    This document is the Accepted Manuscript version of the following article: Colin Haslam, Nick Tsitsianis, Glen Lehman, Tord Andersson, and John Malamatenios, ‘Accounting for decarbonisation and reducing capital at risk in the S&P500’, Accounting Forum, Vol. 42 91): 119-129, March 2018. Under embargo until 7 August 2019. The final, definitive version is available online at doi: https://doi.org/10.1016/j.accfor.2018.01.004.This article accounts for carbon emissions in the S&P 500 and explores the extent to which capital is at risk from decarbonising value chains. At a global level it is proving difficult to decouple carbon emissions from GDP growth. Top-down legal and regulatory arrangements envisaged by the Kyoto Protocol are practically redundant given inconsistent political commitment to mitigating global climate change and promoting sustainability. The United Nations Environment Programme (UNEP) and European Commission (EC) are promoting the role of financial markets and financial institutions as drivers of behavioural change mobilising capital allocations to decarbonise corporate activity.Peer reviewe

    The Stellar Halos of Massive Elliptical Galaxies II: Detailed Abundance Ratios at Large Radius

    Full text link
    We study the radial dependence in stellar populations of 33 nearby early-type galaxies with central stellar velocity dispersions sigma* > 150 km/s. We measure stellar population properties in composite spectra, and use ratios of these composites to highlight the largest spectral changes as a function of radius. Based on stellar population modeling, the typical star at 2 R_e is old (~10 Gyr), relatively metal poor ([Fe/H] -0.5), and alpha-enhanced ([Mg/Fe]~0.3). The stars were made rapidly at z~1.5-2 in shallow potential wells. Declining radial gradients in [C/Fe], which follow [Fe/H], also arise from rapid star formation timescales due to declining carbon yields from low-metallicity massive stars. In contrast, [N/Fe] remains high at large radius. Stars at large radius have different abundance ratio patterns from stars in the center of any present-day galaxy, but are similar to Milky Way thick disk stars. Our observations are thus consistent with a picture in which the stellar outskirts are built up through minor mergers with disky galaxies whose star formation is truncated early (z~1.5-2).Comment: ApJ in press, 12 pages, 6 figure

    Meritocracy and the inheritance of advantage

    Get PDF
    We present a model where more accurate information on the background of individuals facilitates statistical discrimination, increasing inequality and intergenerational persistence in income. Surprisingly, more accurate information on the actual capabilities of workers leads to the same result - firms give increased weight to the more accurate information, increasing inequality, which itself fosters discrimination. The rich take advantage of this through educational investments in their children, and mobility decreases as a consequence of an increase in the ability to reward talent. Using our model to interpret the data suggests that a country like the US might indeed be a land of opportunity for the sufficiently able, as conditional on ability background may have relatively little effect. Nevertheless the US has a relatively low degree of intergenerational mobility precisely because meritocracy facilitates a high correlation of ability with background

    Tissue material properties and computational modelling of the human tibiofemoral joint: a critical review

    Get PDF
    Understanding how structural and functional alterations of individual tissues impact on whole-joint function is challenging, particularly in humans where direct invasive experimentation is difficult. Finite element (FE) computational models produce quantitative predictions of the mechanical and physiological behaviour of multiple tissues simultaneously, thereby providing a means to study changes that occur through healthy ageing and disease such as osteoarthritis (OA). As a result, significant research investment has been placed in developing such models of the human knee. Previous work has highlighted that model predictions are highly sensitive to the various inputs used to build them, particularly the mathematical definition of material properties of biological tissues. The goal of this systematic review is two-fold. First, we provide a comprehensive summation and evaluation of existing linear elastic material property data for human tibiofemoral joint tissues, tabulating numerical values as a reference resource for future studies. Second, we review efforts to model tibiofemoral joint mechanical behaviour through FE modelling with particular focus on how studies have sourced tissue material properties. The last decade has seen a renaissance in material testing fuelled by development of a variety of new engineering techniques that allow the mechanical behaviour of both soft and hard tissues to be characterised at a spectrum of scales from nano- to bulk tissue level. As a result, there now exists an extremely broad range of published values for human tibiofemoral joint tissues. However, our systematic review highlights gaps and ambiguities that mean quantitative understanding of how tissue material properties alter with age and OA is limited. It is therefore currently challenging to construct FE models of the knee that are truly representative of a specific age or disease-state. Consequently, recent tibiofemoral joint FE models have been highly generic in terms of material properties even relying on non-human data from multiple species. We highlight this by critically evaluating current ability to quantitatively compare and model (1) young and old and (2) healthy and OA human tibiofemoral joints. We suggest that future research into both healthy and diseased knee function will benefit greatly from a subject- or cohort-specific approach in which FE models are constructed using material properties, medical imagery and loading data from cohorts with consistent demographics and/or disease states
    • …
    corecore