1,189 research outputs found
3+1 Approach to the Long Wavelength Iteration Scheme
Large-scale inhomogeneities and anisotropies are modeled using the Long
Wavelength Iteration Scheme. In this scheme solutions are obtained as
expansions in spatial gradients, which are taken to be small. It is shown that
the choice of foliation for spacetime can make the iteration scheme more
effective in two respects: (i) the shift vector can be chosen so as to dilute
the effect of anisotropy on the late-time value of the extrinsic curvature of
the spacelike hypersurfaces of the foliation; and (ii) pure gauge solutions
present in a similar calculation using the synchronous gauge vanish when the
spacelike hypersurfaces have extrinsic curvature with constant trace. We
furthermore verify the main conclusion of the synchronous gauge calculation
which is large-scale inhomogeneity decays if the matter--considered to be that
of a perfect-fluid with a barotropic equation of state--violates the
strong-energy condition. Finally, we obtain the solution for the lapse function
and discuss its late-time behaviour. It is found that the lapse function is
well-behaved when the matter violates the strong energy condition.Comment: 21 pages, TeX file, already publishe
Recommended from our members
Semantic effects in sentence recall: The contribution of immediate vs delayed recall in language assessment
Sentence recall is increasingly used to assess language. It is widely debated what the task is actually testing, but one rarely explored aspect is the contribution of semantics to sentence recall. The few studies that have examined the role of semantics in sentence recall have employed an 'intrusion paradigm', following Potter and Lombardi (1990), and their paradigm relies on interference errors with conclusions based on an analysis of error patterns. We have instead manipulated the semantic plausibility of whole sentences to investigate the effects of semantics on immediate and delayed sentence recall. In Study 1, adults recalled semantically plausible and implausible sentences either immediately or after distracter tasks varying in lexical retrieval demands (backward counting and picture naming). Results revealed significant effects of plausibility, delay, and a significant interaction indicating increasing reliance on semantics as the demands of the distracter tasks increased. Study 2, conducted with 6-year-old children, employed delay conditions that were modified to avoid floor effects (delay with silence and forward counting) and a similar pattern of results emerged. This novel methodology provided robust evidence showing the effectiveness of delayed recall in the assessment of semantics and the effectiveness of immediate recall in the assessment of morphosyntax. The findings from our study clarify the linguistic mechanisms involved in immediate and delayed sentence recall, with implications for the use of recall tasks in language assessment.
Learning outcomes: The reader will be able to: (i) understand the difference between immediate and delayed sentence recall and different types of distractors, (ii) understand the utility of immediate and delayed recall sentence recall in language assessment, (iii) discuss suitability of delayed recall for the assessment of semantics
An investigation into sonography student experiences of simulation teaching and learning in the acquisition of clinical skills
©, 2014, SAGE Publications Ltd. All rights reserved. Technological developments are impacting on many aspects of life, including education. One particular area of technology where there is growing interest within higher education institutions (HEIs) offering healthcare training is the use of simulators. The literature shows diverging views on the role of simulated learning in healthcare and further evaluation is needed to explore the quality of learning opportunities that are offered, and their effectiveness in the preparation of students for clinical practice. A qualitative study was undertaken, using interviews to explore the experiences of a group of sonography students after interacting with an ultrasound simulator. Simulation was positively evaluated by students inthis study. The findings confirm that simulated learning enables students to be interactive learners rather than beingpassive recipients of knowledge. Simulated learning provides learning opportunities in a risk free environment, which reduces stress for the student and potential harm to patients. Confidence levels were increased, thereby improving futureclinical scanning experiences for both the student and their patients. Suggestions were made for the more effectiveintegration of simulated learning into the curriculum. Continued research into simulation, teaching and learning practices needs to occur if we are to ensure maximum advantage of the simulation experience
Long-wavelength iteration scheme and scalar-tensor gravity
Inhomogeneous and anisotropic cosmologies are modeled withing the framework
of scalar-tensor gravity theories. The inhomogeneities are calculated to
third-order in the so-called long-wavelength iteration scheme. We write the
solutions for general scalar coupling and discuss what happens to the
third-order terms when the scalar-tensor solution approaches at first-order the
general relativistic one. We work out in some detail the case of Brans-Dicke
coupling and determine the conditions for which the anisotropy and
inhomogeneity decay as time increases. The matter is taken to be that of
perfect fluid with a barotropic equation of state.Comment: 13 pages, requires REVTeX, submitted to Phys. Rev.
Inhomogeneity of Spatial Curvature for Inflation
We study how the initial inhomogeneities of the spatial curvature affect the
onset of inflation in the closed universe. We consider a cosmological model
which contains a radiation and a cosmological constant. In order to treat the
inhomogeneities in the closed universe, we improve the long wavelength
approximation such that the non-small spatial curvature is tractable in the
lowest order. Using the improved scheme, we show how large inhomogeneities of
the spatial curvature prevent the occurrence of inflation.Comment: 17 pages, revtex, 6 figures included using eps
Tensor mass and particle number peak at the same location in the scalar-tensor gravity boson star models - an analytical proof
Recently in boson star models in framework of Brans-Dicke theory, three
possible definitions of mass have been identified, all identical in general
relativity, but different in scalar-tensor theories of gravity.It has been
conjectured that it's the tensor mass which peaks, as a function of the central
density, at the same location where the particle number takes its maximum.This
is a very important property which is crucial for stability analysis via
catastrophe theory. This conjecture has received some numerical support. Here
we give an analytical proof of the conjecture in framework of the generalized
scalar-tensor theory of gravity, confirming in this way the numerical
calculations.Comment: 9 pages, latex, no figers, some typos corrected, reference adde
Long wavelength iteration of Einstein's equations near a spacetime singularity
We clarify the links between a recently developped long wavelength iteration
scheme of Einstein's equations, the Belinski Khalatnikov Lifchitz (BKL) general
solution near a singularity and the antinewtonian scheme of Tomita's. We
determine the regimes when the long wavelength or antinewtonian scheme is
directly applicable and show how it can otherwise be implemented to yield the
BKL oscillatory approach to a spacetime singularity. When directly applicable
we obtain the generic solution of the scheme at first iteration (third order in
the gradients) for matter a perfect fluid. Specializing to spherical symmetry
for simplicity and to clarify gauge issues, we then show how the metric behaves
near a singularity when gradient effects are taken into account.Comment: 35 pages, revtex, no figure
Anisotropic stresses in inhomogeneous universes
Anisotropic stress contributions to the gravitational field can arise from
magnetic fields, collisionless relativistic particles, hydrodynamic shear
viscosity, gravitational waves, skew axion fields in low-energy string
cosmologies, or topological defects. We investigate the effects of such
stresses on cosmological evolution, and in particular on the dissipation of
shear anisotropy. We generalize some previous results that were given for
homogeneous anisotropic universes, by including small inhomogeneity in the
universe. This generalization is facilitated by a covariant approach. We find
that anisotropic stress dominates the evolution of shear, slowing its decay.
The effect is strongest in radiation-dominated universes, where there is slow
logarithmic decay of shear.Comment: 7 pages Revte
Opening opportunities for high-resolution isotope analysis - Quantification of δ15NNO3 and δ18ONO3 in diffusive equilibrium in thin–film passive samplers
The fate of nitrate transported across groundwater-surface water interfaces has been intensively studied in recent decades. The interfaces between aquifers and rivers or lakes have been identified as biogeochemical hotspots with steep redox gradients. However, a detailed understanding of the spatial heterogeneity and potential temporal variability of these hotspots, and the consequences for nitrogen processing, is still hindered by a paucity of adequate measurement techniques. A novel methodology is presented here, using Diffusive Equilibrium in Thin-film (DET) gels as high-spatial-resolution passive-samplers of δ15NNO3 and δ18ONO3 to investigate nitrogen cycling. Fractionation of δ15NNO3 and δ18ONO3 during diffusion of nitrate through the DET gel was determined using varying equilibrium times and nitrate concentrations. This demonstrated that nitrate isotopes of δ15NNO3 and δ18ONO3 do not fractionate when sampled with a DET gel. δ15NNO3 values from the DET gels ranged between 2.3 ± 0.2 and 2.7 ± 0.3‰ for a NO3– stock solution value of 2.7 ± 0.4‰, and δ18ONO3 values ranged between 18.3 ± 1.0 and 21.5 ± 0.8‰ for a NO3– stock solution of 19.7 ± 0.9‰. Nitrate recovery and isotope values were independent of equilibrium time and nitrate concentration. Additionally, an in situ study showed that nitrate concentration and isotopes provide unique, high-resolution data that enable improved understanding of nitrogen cycling in freshwater sediments
Unconstrained Hamiltonian formulation of General Relativity with thermo-elastic sources
A new formulation of the Hamiltonian dynamics of the gravitational field
interacting with(non-dissipative) thermo-elastic matter is discussed. It is
based on a gauge condition which allows us to encode the six degrees of freedom
of the ``gravity + matter''-system (two gravitational and four
thermo-mechanical ones), together with their conjugate momenta, in the
Riemannian metric q_{ij} and its conjugate ADM momentum P^{ij}. These variables
are not subject to constraints. We prove that the Hamiltonian of this system is
equal to the total matter entropy. It generates uniquely the dynamics once
expressed as a function of the canonical variables. Any function U obtained in
this way must fulfil a system of three, first order, partial differential
equations of the Hamilton-Jacobi type in the variables (q_{ij},P^{ij}). These
equations are universal and do not depend upon the properties of the material:
its equation of state enters only as a boundary condition. The well posedness
of this problem is proved. Finally, we prove that for vanishing matter density,
the value of U goes to infinity almost everywhere and remains bounded only on
the vacuum constraints. Therefore the constrained, vacuum Hamiltonian (zero on
constraints and infinity elsewhere) can be obtained as the limit of a ``deep
potential well'' corresponding to non-vanishing matter. This unconstrained
description of Hamiltonian General Relativity can be useful in numerical
calculations as well as in the canonical approach to Quantum Gravity.Comment: 29 pages, TeX forma
- …